共查询到20条相似文献,搜索用时 15 毫秒
1.
Qing Zhao Jian Wu Guangqin Cai Qingyong Yang Muhammad Shahid Chuchuan Fan Chunyu Zhang Yongming Zhou 《Plant biotechnology journal》2019,17(12):2313-2324
One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high‐density SNP‐based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%–5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion‐binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker‐assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism. 相似文献
2.
《Animal : an international journal of animal bioscience》2021,15(9):100341
Intramuscular fat content (IFC) is an essential quantitative trait of meat, affecting multiple meat quality indicators. A certain amount of IFC could not only improve the sensory score of pork but also increase the flavour, tenderness, juiciness and shelf-life. To dissect the genetic determinants of IFC, two methods, including genome-wide efficient mixed-model analysis (GEMMA) and linkage disequilibrium adjusted kinships (LDAKs), were used to carry out genome-wide association studies for IFC in Suhuai pig population. A total of 14 and 18 significant single nucleotide polymorphisms (SNPs) were identified by GEMMA and LDAK, respectively. The results of these two methods were highly consistent and all 14 significant SNPs in GEMMA were detected by LDAK. Seven of the 18 SNPs reached the genome-wide significance level (P < 9.85E−07) while 11 cases reached the suggestive significance level (P < 1.77E−05). These significant SNPs were mainly distributed on Sus scrofa chromosome (SSC) 5, 3, and 7. Moreover, one locus resides in a 2.27 Mb (71.37–73.64 Mb) region on SSC5 harbouring 13 significant SNPs associated with IFC, and the lead SNP (rs81302978) also locates in this region. Linkage disequilibrium (LD) analysis showed that there were four pairs of complete LD (r2 = 1) among these 13 SNPs, and the remaining 9 SNPs with incomplete LD (r2 ≠ 1) were selected for subsequent analyses of IFC. Association analyses showed that 7 out of 9 SNPs were significantly associated with IFC (P < 0.05) in 330 Suhuai pigs, and the other 2 SNPs tended to reach a significant association level with IFC (P < 0.1). The phenotypic variance explained (PVE) range of these 9 SNPs was 0.92–3.55%. Meanwhile, the lead SNP was also significantly associated (rs81302978) with IFC (P < 0.05) in 378 commercial hybrid pigs (Pietrain × Duroc) × (Landrace × Yorkshire) (PDLY), and the PVE was 1.38%. Besides, two lipid metabolism-relevant candidate genes, the leucine rich repeat kinase 2 (LRRK2) and PDZ domain containing ring finger 4 (PDZRN4) were identified in the 2.27 Mb region on SSC5. In conclusion, our results may provide a set of markers useful for genetic improvement of IFC in pigs and will advance the genome selection process of IFC on pig breeding programmes. 相似文献
3.
Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). 总被引:17,自引:0,他引:17
D J de Koning L L Janss A P Rattink P A van Oers B J de Vries M A Groenen J J van der Poel P N de Groot E W Brascamp J A van Arendonk 《Genetics》1999,152(4):1679-1690
In an experimental cross between Meishan and Dutch Large White and Landrace lines, 619 F(2) animals and their parents were typed for molecular markers covering the entire porcine genome. Associations were studied between these markers and two fatness traits: intramuscular fat content and backfat thickness. Association analyses were performed using interval mapping by regression under two genetic models: (1) an outbred line-cross model where the founder lines were assumed to be fixed for different QTL alleles; and (2) a half-sib model where a unique allele substitution effect was fitted within each of the 19 half-sib families. Both approaches revealed for backfat thickness a highly significant QTL on chromosome 7 and suggestive evidence for a QTL at chromosome 2. Furthermore, suggestive QTL affecting backfat thickness were detected on chromosomes 1 and 6 under the line-cross model. For intramuscular fat content the line-cross approach showed suggestive evidence for QTL on chromosomes 2, 4, and 6, whereas the half-sib analysis showed suggestive linkage for chromosomes 4 and 7. The nature of the QTL effects and assumptions underlying both models could explain discrepancies between the findings under the two models. It is concluded that both approaches can complement each other in the analysis of data from outbred line crosses. 相似文献
4.
A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat 总被引:1,自引:0,他引:1
Jayatilake DV Bai GH Dong YH 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,122(6):1189-1198
A Chinese Spring-Sumai 3 chromosome 7A disomic substitution line (CS-Sumai 3-7ADSL) was reported to have a high level of Fusarium
head blight (FHB) resistance for symptom spread within a spike (Type II) and low deoxynivalenol accumulation in infected kernels
(Type III), but a quantitative trait locus (QTL) on chromosome 7A has never been identified from this source. To characterize
QTL on chromosome 7A, we developed 191 7A chromosome recombinant inbred lines (7ACRIL) from a cross between Chinese Spring
and CS-Sumai 3-7ADSL and evaluated both types of resistance in three greenhouse experiments. Two major QTL with Sumai 3 origin,
conditioning both Type II and III resistance, were mapped in the short arm of chromosomes 3B (3BS) and near the centromere
of chromosome 7A (7AC). The 3BS QTL corresponds to previously reported Fhb1 from Sumai 3, whereas 7AC QTL, designated as Fhb7AC, is a novel QTL identified from CS-Sumai 3-7ADSL in this study. Fhb7AC explains 22% phenotypic variation for Type II and 24% for Type III resistance. Marker Xwmc17 is the closest marker to Fhb7AC for both types of resistance. Fhb1 and Fhb7AC were additive, and together explained 56% variation for Type II and 41% for Type III resistance and resulted in 66% reduction
in FHB severity and 84% reduction in deoxynivalenol (DON) content. Haplotype analysis of Sumai 3 parents revealed that Fhb7AC originated from Funo, an Italian cultivar. Fhb7AC has the potential to be used in improving wheat cultivars for both types of resistance. 相似文献
5.
Broman KW Sen S Owens SE Manichaikul A Southard-Smith EM Churchill GA 《Genetics》2006,174(4):2151-2158
The X chromosome requires special treatment in the mapping of quantitative trait loci (QTL). However, most QTL mapping methods, and most computer programs for QTL mapping, have focused exclusively on autosomal loci. We describe a method for appropriate treatment of the X chromosome for QTL mapping in experimental crosses. We address the important issue of formulating the null hypothesis of no linkage appropriately. If the X chromosome is treated like an autosome, a sex difference in the phenotype can lead to spurious linkage on the X chromosome. Further, the number of degrees of freedom for the linkage test may be different for the X chromosome than for autosomes, and so an X chromosome-specific significance threshold is required. To address this issue, we propose a general procedure to obtain chromosome-specific significance thresholds that controls the genomewide false positive rate at the desired level. We apply our methods to data on gut length in a large intercross of mice carrying the Sox10Dom mutation, a model of Hirschsprung disease. We identified QTL contributing to variation in gut length on chromosomes 5 and 18. We found suggestive evidence of linkage to the X chromosome, which would be viewed as strong evidence of linkage if the X chromosome was treated as an autosome. Our methods have been implemented in the package R/qtl. 相似文献
6.
A. Delprato B. Bonheur M.‐P. Algéo A. Murillo E. Dhawan L. Lu R. W. Williams W. E. Crusio 《Genes, Brain & Behavior》2018,17(7)
Aggression between male conspecifics is a complex social behavior that is likely modulated by multiple gene variants. In this study, the BXD recombinant inbred mouse strains (RIS) were used to map quantitative trait loci (QTLs) underlying behaviors associated with intermale aggression. Four hundred and fifty‐seven males from 55 strains (including the parentals) were observed at an age of 13 ± 1 week in a resident‐intruder test following 10 days of isolation. Attack latency was measured directly within a 10‐minute time period and the test was repeated 24 hours later. The variables we analyzed were the proportion of attacking males in a given strain as well as the attack latency (on days 1 and 2, and both days combined). On day 1, 29% of males attacked, and this increased to 37% on day 2. Large strain differences were obtained for all measures of aggression, indicating substantial heritability (intraclass correlations 0.10‐0.18). We identified a significant QTL on chromosome (Chr) 1 and suggestive QTLs on mouse Chrs 1 and 12 for both attack and latency variables. The significant Chr 1 locus maps to a gene‐sparse region between 82 and 88.5 Mb with the C57BL/6J allele increasing aggression and explaining about 18% of the variance. The most likely candidate gene modulating this trait is Htr2b which encodes the serotonin 2B receptor and has been implicated in aggressive and impulsive behavior in mice, humans and other species. 相似文献
7.
Summary. Fibroblasts from a pig with a spontaneous reciprocal translocation involving chromosome 7, were used to prepare a set of pig-mouse somatic cell hybrids. The isozyme analysis strongly indicated that in pigs, the NP (nucleoside phosphorylase) gene is located on the distal part of the long arm of chromosome 7, (q21-qter), while the MPI (mannose phosphate isomerase) gene is in the region q21-pter. This confirmed previously reported chromosomal assignment of these genes in pigs and that this synteny has been evolutionarily conserved in several different animal species. 相似文献
8.
Kuroki M Saito K Matsuba S Yokogami N Shimizu H Ando I Sato Y 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2007,115(5):593-600
A quantitative trait locus (QTL) for cold tolerance at the booting stage of a cold-tolerant rice breeding line, Hokkai-PL9,
was analyzed. A total of 487 simple sequence repeat (SSR) markers distributed throughout the genome were used to survey for
polymorphism between Hokkai-PL9 and a cold-sensitive breeding line, Hokkai287, and 54 markers were polymorphic. Single marker
analysis revealed that markers on chromosome 8 are associated with cold tolerance. By interval mapping using an F2 population between Hokkai-PL9 and Hokkai287, a QTL for cold tolerance was detected on the short arm of chromosome 8. The
QTL explains 26.6% of the phenotypic variance, and its additive effect is 11.4%. Substitution mapping suggested that the QTL
is located in a 193-kb interval between SSR markers RM5647 and PLA61. We tentatively designated the QTL as qCTB8 (quantitative trait locus for cold tolerance at the booting stage on chromosome 8). 相似文献
9.
A quantitative trait locus for long photoperiod response mapped on chromosome 4H in barley 总被引:1,自引:0,他引:1
Xifeng Ren Chengdao Li Mehmet Cakir Wenying Zhang Christy Grime Xiao-Qi Zhang Sue Broughton Dongfa Sun Reg Lance 《Molecular breeding : new strategies in plant improvement》2012,30(2):1121-1130
Photoperiod response is a key determinant for barley adaptation to diverse environments. A major quantitative trait locus (QTL) for response to long photoperiod was identified in Australia (Perth, 31°56??S) and China (Wuhan, 30°33??N) using 178 doubled haploid lines derived from a cross of an Australian barley, Baudin, and a Canadian barley, AC Metcalfe. The QTL was detected as a major QTL in the 18-h photoperiod glasshouse experiments and mapped to the Xp12m50B199?CXp13m47B399 interval on chromosome 4H with a LOD score of 57 in Australia and confirmed in China. The single QTL accounted for 77.48 and 37.81% of phenotypic variation for long photoperiod response in Australia and China, respectively. The same QTL also controlled heading date in Australia, under normal and extended photoperiod conditions, and in China, under extended photoperiod and late-sown conditions. The QTL advanced heading date by 27.8?days in Australia and 42.5?days in China under a 18-h photoperiod. In addition, QTL for heading date were identified on chromosomes 2H and 3H. The chromosome 3H QTL was associated with the denso gene and detected in all conditions, but the chromosome 2H QTL was only detected in Australia. The new photoperiod response QTL, Qhea.BM.4-13/Qpho.BM.4-13, on chromosome 4H and its associated markers will provide an alternative for plant breeders developing new varieties for different environments using marker-assisted selection. 相似文献
10.
A form of genetic interaction, or epistasis, occurs when one gene interferes with the phenotypic effect of another nonallelic gene. In pristane-induced arthritis (PIA) in rats we have previously identified Pia3, on chromosome 6, to be a locus that regulates onset of disease. In a single congenic strain containing Pia3 on the arthritis-susceptible DA background, DA.Pia3, no difference in onset of disease or early disease severity could be detected. After a two-loci interaction analysis of (E3 x DA)F2 intercross data, Pia3 was found to interact with Pia4 (chromosome 12). Subsequently, the DA.Pia3 congenic strain was combined with the DA.Pia4 congenic strain so that an effect of Pia3 could be observed. The effect of heterozygosity in Pia4 results in lower severity and thus in combination with Pia3 made it possible to observe that Pia3 alleles from the arthritis-resistant E3 strain rendered more severe arthritis into the otherwise 100% susceptible DA strain. As the introduction of Pia4 heterozygosity results in a lower level of arthritis severity we regard this as an additive interaction with a severity threshold-lowering effect. 相似文献
11.
In this study, we refine a quantitative trait locus for equine osteochondrosis (OC) on horse chromosome (ECA) 2 to a genome-wide significant interval at 20.08-30.94 Mb. The marker set contained 27 newly developed microsatellites equidistantly distributed over ECA2 and 44 nucleotide polymorphisms, located in 16 positional candidate genes for OC. Genotyping was performed in 211 Hanoverian horses from 14 paternal half-sib groups. A NCDN-associated SNP and haplotype were significantly associated with OC in fetlock and/or hock joints. This study is a further step towards the identification of genes responsible for OC in horses. 相似文献
12.
Hofstetter JR Hitzemann RJ Belknap JK Walter NA McWeeney SK Mayeda AR 《Genes, Brain & Behavior》2008,7(2):214-223
We report here the confirmation of the quantitative trait locus for haloperidol-induced catalepsy on distal chromosome (Chr) 1. We determined that this quantitative trait locus was captured in the B6.D2- Mtv7a /Ty congenic mouse strain, whose introgressed genomic interval extends from approximately 169.1 to 191.3 Mb. We then constructed a group of overlapping interval-specific congenic strains to further break up the interval and remapped the locus between 177.5 and 183.4 Mb. We next queried single nucleotide polymorphism (SNP) data sets and identified three genes with nonsynonymous coding SNPs in the quantitative trait locus. We also queried two brain gene expression data sets and found five known genes in this 5.9-Mb interval that are differentially expressed in both whole brain and striatum. Three of the candidate quantitative trait genes were differentially expressed using quantitative real-time polymerase chain reaction analyses. Overall, the current study illustrates how multiple approaches, including congenic fine mapping, SNP analysis and microarray gene expression screens, can be integrated both to reduce the quantitative trait locus interval significantly and to detect promising candidate quantitative trait genes. 相似文献
13.
Cai G Cole SA Butte N Bacino C Diego V Tan K Göring HH O'Rahilly S Farooqi IS Comuzzie AG 《Obesity (Silver Spring, Md.)》2006,14(9):1596-1604
Objective: Genetic components of energy homeostasis contributing to childhood obesity are poorly understood. Genome scans were performed to identify chromosomal regions contributing to physical activity and dietary intake traits in Hispanic children participating in the VIVA LA FAMILIA Study. Research Methods and Procedures: We report linkage findings on chromosome 18 for physical activity and dietary intake in 1030 siblings from 319 Hispanic families. Measurements entailed physical activity by accelerometry, dietary intake by two 24‐hour recalls, and genetic linkage analyses using SOLAR software. Results: Significant heritabilities were seen for physical activity and dietary intake, ranging from 0.46 to 0.69, except for vigorous activity (h2 = 0.18). Percentage time in sedentary activity mapped to markers D18S1102‐D18S64 on chromosome 18 [logarithm of the odds (LOD) score = 4.07], where melanocortin 4 receptor gene (MC4R) resides. Quantitative trait loci (QTLs) for total activity counts, percentage time in light or in moderate activity, and carbohydrate intake and percentage of energy intake from carbohydrates were detected in the same region (LOD = 2.28, 2.79, 2.2, 1.84, and 1.51, respectively). A novel loss of function mutation in MC4R (G55V) was detected in six obese relatives, but not in the rest of the cohort. Removal of these MC4R‐deficient subjects from the analysis reduced the LOD score for sedentary activity to 3.94. Discussion: Given its role in the regulation of food intake and energy expenditure, MC4R is a strong positional candidate gene for the QTL on chromosome 18 detected for physical activity and dietary intake in Hispanic children. 相似文献
14.
15.
Watanabe A Toyota T Owada Y Hayashi T Iwayama Y Matsumata M Ishitsuka Y Nakaya A Maekawa M Ohnishi T Arai R Sakurai K Yamada K Kondo H Hashimoto K Osumi N Yoshikawa T 《PLoS biology》2007,5(11):e297
Deficits in prepulse inhibition (PPI) are a biological marker for schizophrenia. To unravel the mechanisms that control PPI, we performed quantitative trait loci (QTL) analysis on 1,010 F2 mice derived by crossing C57BL/6 (B6) animals that show high PPI with C3H/He (C3) animals that show low PPI. We detected six major loci for PPI, six for the acoustic startle response, and four for latency to response peak, some of which were sex-dependent. A promising candidate on the Chromosome 10-QTL was Fabp7 (fatty acid binding protein 7, brain), a gene with functional links to the N-methyl-D-aspartic acid (NMDA) receptor and expression in astrocytes. Fabp7-deficient mice showed decreased PPI and a shortened startle response latency, typical of the QTL's proposed effects. A quantitative complementation test supported Fabp7 as a potential PPI-QTL gene, particularly in male mice. Disruption of Fabp7 attenuated neurogenesis in vivo. Human FABP7 showed altered expression in schizophrenic brains and genetic association with schizophrenia, which were both evident in males when samples were divided by sex. These results suggest that FABP7 plays a novel and crucial role, linking the NMDA, neurodevelopmental, and glial theories of schizophrenia pathology and the PPI endophenotype, with larger or overt effects in males. We also discuss the results from the perspective of fetal programming. 相似文献
16.
17.
Maja Tarka Mikael ?kesson Dario Beraldi Jules Hernández-Sánchez Dennis Hasselquist Staffan Bensch Bengt Hansson 《Proceedings. Biological sciences / The Royal Society》2010,277(1692):2361-2369
Wing length is a key character for essential behaviours related to bird flight such as migration and foraging. In the present study, we initiate the search for the genes underlying wing length in birds by studying a long-distance migrant, the great reed warbler (Acrocephalus arundinaceus). In this species wing length is an evolutionary interesting trait with pronounced latitudinal gradient and sex-specific selection regimes in local populations. We performed a quantitative trait locus (QTL) scan for wing length in great reed warblers using phenotypic, genotypic, pedigree and linkage map data from our long-term study population in Sweden. We applied the linkage analysis mapping method implemented in GridQTL (a new web-based software) and detected a genome-wide significant QTL for wing length on chromosome 2, to our knowledge, the first detected QTL in wild birds. The QTL extended over 25 cM and accounted for a substantial part (37%) of the phenotypic variance of the trait. A genome scan for tarsus length (a body-size-related trait) did not show any signal, implying that the wing-length QTL on chromosome 2 was not associated with body size. Our results provide a first important step into understanding the genetic architecture of avian wing length, and give opportunities to study the evolutionary dynamics of wing length at the locus level. 相似文献
18.
Yubo Chen Lu Qi Xiaoyu Zhang Jixiang Huang Jibian Wang Hongcheng Chen Xiyuan Ni Fei Xu Yanjun Dong Haiming Xu Jianyi Zhao 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2013,126(10):2499-2509
Increasing seed oil content has become one of the most important breeding criteria in rapeseed (Brassica napus). However, oil content is a complex quantitative trait. QTL mapping in a double haploid population (SG population) emerging from a cross between a German (Sollux) and Chinese (Gaoyou) cultivars revealed one QTL for oil content on linkage group A1 (OilA1), which was mapped to a 17 cM genetic interval. To further validate and characterize the OilA1, we constructed a high-resolution map using B. rapa sequence resources and developed a set of near-isogenic lines (NILs) by employing a DH line SG-DH267 as donor and Chinese parent Gaoyou as recurrent background. The results showed highly conserved synteny order between B. rapa and B. napus within the linkage group A1 and revealed a possible centromere region between two markers ZAASA1-38 and NTP3 (2.5 cM). OilA1 was firstly validated by 250 BC5F2 plants and was confirmed in a 10.6 cM interval between the markers ZAASA1-47 and ZAASA1-77. Further substitution mapping was conducted by using two generations of QTL-NILs, 283 lines from eight BC5F3:4 families and 428 plants from six BC5F4 sub-NILs and thus narrowed the OilA1 interval to 6.9 cM and 4.3 cM (1.4 Mb), respectively. Field investigations with two replications using homozygous BC5F3:4 sister sub-NILs indicated that NILs, which carry a Sollux chromosome segment across the target region showed significant higher oil content (1.26 %, p < 0.001) than their sister NILs containing Gaoyou chromosome. The OilA1 locus is of particular interest for breeding purpose in China because 80 % of Chinese cultivars do not carry this desirable allele. 相似文献
19.
Wim Huygens Martine A Thomis Maarten W Peeters Jeroen Aerssens Rob G J H Janssen Robert F Vlietinck Gaston Beunen 《Twin research》2004,7(6):603-606
Previous findings show strong evidence for the role of retinoblastoma (Rb) in myoblast proliferation and differentiation. However, it is not known whether variation in the retinoblastoma gene (RB1 ) is responsible for normal variation in human muscle strength. Therefore, a linkage analysis for quantitative traits was performed on 329 young male siblings from 146 families with muscle strength, using a polymorphic marker in RB1 (D13S153 on 13q14.2). Trunk strength, a general strength indicator that requires activation of large muscle groups, was measured on a Cybex TEF isokinetic dynamometer. We found evidence for linkage between locus D13S153 at 13q14.2 and several measurements of trunk flexion with LOD scores between 1.62 and 2.78 (.002< p <.0002). No evidence for linkage was found with trunk extension. This first exploration of the relationship between RB1 and human muscle strength through linkage analysis warrants efforts for further fine mapping of this region. 相似文献
20.
Aspartate kinase 2. A candidate gene of a quantitative trait locus influencing free amino acid content in maize endosperm 下载免费PDF全文
The maize (Zea mays) Oh545o2 inbred accumulates an exceptionally high level of free amino acids, especially lysine (Lys), threonine (Thr), methionine, and iso-leucine. In a cross between Oh545o2 and Oh51Ao2, we identified several quantitative trait loci linked with this phenotype. One of these is on the long arm of chromosome 2 and is linked with loci encoding aspartate (Asp) kinase 2 and Asp kinase (AK)-homoserine dehydrogenase (HSDH) 2. To investigate whether these enzymes can contribute to the high levels of Asp family amino acids, we measured their specific activity and feedback inhibition properties, as well as activities of several other key enzymes involved in Lys metabolism. We did not find a significant difference in total activity of dihydrodipicolinate synthase, HSDH, and Lys ketoglutarate reductase between these inbreds, and the feedback inhibition properties of HSDH and dihyrodipicolinate synthase by Lys and/or Thr were similar. The most significant difference we found between Oh545o2 and Oh51Ao2 is feedback inhibition of AK by Lys but not Thr. AK activity in Oh545o2 is less sensitive to Lys inhibition than that in Oh51Ao2, with a Lys I50 twice that of Oh51Ao2. AK activity in Oh545o2 endosperm is also higher than in Oh51Ao2 at 15 d after pollination, but not 20 d after pollination. The results indicate that the Lys-sensitive Asp kinase 2, rather than the Thr-sensitive AK-HSDH2, is the best candidate gene for the quantitative trait locus affecting free amino acid content in Oh545o2. 相似文献