首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bovine and dogfish chymotrypsins were compared to determine if chymotrypsin from a poikilothermic organism (spiny dogfish (Squalus acanthias] adapted to low temperatures possessed catalytic properties different from those of the same enzyme from a warm-blooded animal. An improved procedure was developed for isolating dogfish pancreatic chymotrypsin. The least hydrophobic and smallest substrate used, p-nitrophenyl acetate, had similar enthalpies of association (delta Ha) with both enzymes, whereas larger, more hydrophobic substrates had delta Ha values that were of opposite sign for the two enzymes. As the temperature increased, the association constants (1/Ks) for p-nitrophenyl valerate and p-nitrophenyltrimethyl acetate increased for dogfish chymotrypsin and decreased for bovine chymotrypsin, while the free energies of association (delta Ga) remained relatively constant. Acylation of chymotrypsin was 1.5-2.5 times slower in the dogfish enzyme than in the bovine enzyme except below 15 degrees C with p-nitrophenyltrimethyl acetate. delta H++ for acylation by p-nitrophenyltrimethyl acetate were 2.0 kcal/mol for the dogfish enzyme and 10.2 kcal/mol for the bovine, whereas delta H++ values were only slightly lower in the dogfish enzyme for the other two substrates. For all substrates, the deacylation rate constant (kcat) was greater with dogfish chymotrypsin than bovine. However, the free energies of activation (delta G++) for deacylation were nearly equal between the two enzymes for each of the substrates.  相似文献   

2.
To elucidate the effects of pressure on the function of Escherichia coli dihydrofolate reductase (DHFR), the enzyme activity and the dissociation constants of substrates and cofactors were measured at pressures up to 250 MPa at 25 degrees C and pH 7.0. The enzyme activity decreased with increasing pressure, accompanying the activation volume of 7.8 ml mol(-1). The values of the Michaelis constant (K(m)) for dihydrofolate and NADPH were slightly higher at 200 MPa than at atmospheric pressure. The hydride-transfer step was insensitive to pressure, as monitored by the effects of the deuterium isotope of NADPH on the reaction velocity. The dissociation constants of substrates and cofactors increased with pressure, producing volume reductions from 6.5 ml mol(-1) (tetrahydrofolate) to 33.5 ml mol(-1) (NADPH). However, the changes in Gibbs free energy with dissociation of many ligands showed different pressure dependences below and above 50 MPa, suggesting conformational changes of the enzyme at high pressure. The enzyme function at high pressure is discussed based on the volume levels of the intermediates and the candidates for the rate-limiting process.  相似文献   

3.
The effect which hydrostatic pressure exerts on the hydrolysis of dinitrophenyl phosphate and nitrophenyl phosphate by the sarcoplasmic reticulum calcium-transport enzyme was determined. Activation volumes for substrate hydrolysis at saturating and non-saturating concentrations of calcium were determined and used to evaluate volume increments for initial calcium binding. A reaction scheme in which two unidirectional substrate-driven reactions transfer high-affinity into low-affinity calcium-binding sites was applied to determine binding-volume increments. It has been inferred from the pressure dependence of the volume-generating function, defined as the difference between the reciprocal reaction rates of the saturated and the unsaturated enzyme, that calcium binding proceeds in two steps. The two associated binding constants are endowed with large binding-volume increments of opposite signs (+84 to +207 ml/mol and -3 to -136 ml/mol). Under different experimental conditions, with respect to the temperature, degree of calcium saturation and absence or presence of Me2SO, they add up to the same integral volume increment of 73 +/- 3.5 ml/mol for the entry of two calcium ions into the reaction cycle. In aqueous media, the two binding constants contribute about equally to binding and to the observed binding-volume increment. The presence of Me2SO strongly favours the first binding step. The size of the integral volume increment is in line with that determined for the interaction of calcium with calmodulin [Kupke, D.W. & Dorrier, T.E. (1986) Biochem. Biophys. Res. Commun. 38, 199-204].  相似文献   

4.
The rate constants for both acylation and deacylation of beta-lactamase PC1 from Staphylococcus aureus and the RTEM beta-lactamase from Escherichia coli were determined by the acid-quench method [Martin & Waley (1988) Biochem. J. 254, 923-925] with several good substrates, and, for a wider range of substrates, of beta-lactamase I from Bacillus cereus. The values of the acylation and deacylation rate constants for benzylpenicillin were approximately the same (i.e. differing by no more than 2-fold) for each enzyme. The variation of kcat./Km for benzylpenicillin with the viscosity of the medium was used to obtain values for all four rate constants in the acyl-enzyme mechanism for all three enzymes. The reaction is partly diffusion-controlled, and the rate constant for the dissociation of the enzyme-substrate complex has approximately the same value as the rate constants for acylation and deacylation. Thus all three first-order rate constants have comparable values. Here there is no single rate-determining step for beta-lactamase action. This is taken to be a sign of a fully efficient enzyme.  相似文献   

5.
Ghrelin, discovered in rat stomach as an endogenous growth hormone secretagogue, is octanoylated at the Ser3 residue. Since this octanoylation is essential for the functions of ghrelin, the enzymes that catalyze acylation for ghrelin biosynthesis and deacylation (deactivation step) must be considered as important regulators. We found that rat stomach homogenate contained ghrelin deacylation activity, and we isolated the active fractions by column chromatography. After sequencing and expressing candidate proteins, the ghrelin deacylation enzyme in the stomach was identified as lysophospholipase I (LysoPLA I). The enzyme properties were examined using recombinant rat LysoPLA I expressed in Escherichia coli. K(m) and V(max) values were determined as 6.5 microM and 2.3 micromol/min/mg for ghrelin and 2.2 x 10(2) microM and 0.5 micromol/min/mg for lysophosphatidylcholine (LysoPC), respectively. The deacylation of both substrates was inhibited by methyl arachidonyl fluorophosphonate (MAFP), which is known as an irreversible inhibitor of LysoPLA I. These results reveal that LysoPLA I catalyzes the removal of n-octanoic acid from ghrelin to form des-acyl ghrelin. Identification of the ghrelin deacylation enzyme in the stomach and a deacylation inhibitor will be helpful in investigating ghrelin biosynthesis.  相似文献   

6.
A kinetic study of hydrolytic catalysis by wheat bran carboxypeptidase (carboxypeptidase W) was carried out using 3-(2-furyl)acryloyl-acylated (Fua-) synthetic substrates. This enzyme showed high esterase activity in addition to the intrinsic carboxypeptidase activity. The optimum pH for the peptidase activity (kcat/Km) was at pH 3.3 and the kcat/Km value decreased with increasing pH with an apparent pKa of 4.50, while the esterase activity increased with pH up to pH 8 with an apparent pKa of 6.04. Optimum pH's for kcat for the peptidase and esterase reactions were also very different and their apparent pKa values were 3.80 and 6.15, respectively. From a measurement of the pressure dependences of kcat and Km, the activation volumes (delta V not equal to) and reaction volumes (delta V), respectively, were determined. delta V not equal to for kcat was -7 to -8 ml/mol for peptidase and -2 to -3 ml/mol for esterase. These results lead us to propose that the peptidase and esterase activities of carboxypeptidase W are different not in the rate-determining steps in a common reaction pathway, but in the binding modes and/or catalytic site(s).  相似文献   

7.
Lung mechanics and morphometry were assessed in two groups of nine normal open-chest rabbits mechanically ventilated (MV) for 3-4 h at zero end-expiratory pressure (ZEEP) with physiological tidal volumes (Vt; 11 ml/kg) and high (group A) or low (group B) inflation flow (44 and 6.1 ml x kg(-1) x s(-1), respectively). Relative to initial MV on positive end-expiratory pressure (PEEP; 2.3 cmH(2)O), MV on ZEEP increased quasi-static elastance and airway and viscoelastic resistance more in group A (+251, +393, and +225%, respectively) than in group B (+180, +247, and +183%, respectively), with no change in viscoelastic time constant. After restoration of PEEP, quasi-static elastance and viscoelastic resistance returned to control, whereas airway resistance, still relative to initial values, remained elevated more in group A (+86%) than in group B (+33%). In contrast, prolonged high-flow MV on PEEP had no effect on lung mechanics of seven open-chest rabbits (group C). Gas exchange on PEEP was equally preserved in all groups, and the lung wet-to-dry ratios were normal. Relative to group C, both groups A and B had an increased percentage of abnormal alveolar-bronchiolar attachments and number of polymorphonuclear leukocytes in alveolar septa, the latter being significantly larger in group A than in group B. Thus prolonged MV on ZEEP with cyclic opening-closing of peripheral airways causes alveolar-bronchiolar uncoupling and parenchymal inflammation with concurrent, persistent increase in airway resistance, which are worsened by high-inflation flow.  相似文献   

8.
Class III histone deacetylases (Sir2 or sirtuins) catalyze the NAD+-dependent conversion of acetyl-lysine residues to nicotinamide, 2'-O-acetyl-ADP-ribose (OAADPr), and deacetylated lysine. Class I and II HDACs utilize a different deacetylation mechanism, utilizing an active site zinc to direct hydrolysis of acetyl-lysine residues to lysine and acetate. Here, using ten acetyl-lysine analog peptides, we have probed the substrate binding pockets of sirtuins and investigated the catalytic differences among sirtuins and class I and II deacetylases. For the sirtuin Hst2, acetyl-lysine analog peptide binding correlated with the hydrophobic substituent parameter pi with a slope of -0.35 from a plot of log Kd versus pi. Interestingly, propionyl- and butyryl-lysine peptides were found to bind tighter to Hst2 compared with acetyl-lysine peptide and showed measurable rates of catalysis with Hst2, Sirt1, Sirt2, and Sirt3, suggesting propionyl- and butyryl-lysine proteins may be sirtuin substrates in vivo. Unique among the acetyl-lysine analog peptides examined, homocitrulline peptide produced ADP-ribose instead of the corresponding OAADPr analog. The electron-withdrawing nature of each acetyl analog had a profound impact on the deacylation rate between deacetylase classes. The rate of catalysis with the acetyl-lysine analog peptides varied over five orders of magnitude with the class III deacetylase Hst2, revealing a linear free energy relationship with a slope of -1.57 when plotted versus the Taft constant, sigma*. HDAC8, a class I deacetylase, displayed the opposite trend with a slope of +0.79. These results are applicable toward the development of selective substrates and other mechanistic probes of protein deacetylases.  相似文献   

9.
1. A proteinase has been isolated from the ovarian fluid of the lumpsucker (Cyclopterus lumpus). 2. The enzyme was purified essentially to homogeneity by a one step purification procedure using anion-exchange chromatography. 3. The mol. wt of the denatured enzyme is approximately 20,000 as judged by SDS-polyacrylamide gel electrophoresis. 4. The enzyme is inhibited by serine-proteinase inhibitors and acts in the manner of a trypsin-type proteinase both with respect to specific peptide substrates and enzyme inhibitors. 5. The lumpsucker proteinase exhibits low general proteolytic activity but acts effectively on the specific chromogenic peptide substrates.  相似文献   

10.
Cryospectrokinetic studies of zinc and cobalt carboxypeptidase A disclosed two intermediates in the hydrolysis of both peptides and depsipeptides and furnished all the rate and equilibrium constants for the reaction scheme E + S in equilibrium ES1 in equilibrium ES2---E + P [Auld, D. S., Galdes, A., Geoghegan, K. F., Holmquist, B., Martinelli, R. A., & Vallee, B. L. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5041-5045]. Since the ES2 intermediate is the predominate enzyme species present at steady state, its chemical nature is deducible from subzero chemical quench studies done after steady state is established. Extrapolation of the product concentration to zero time, [P0], measures the concentration of the enzyme species in which bond cleavage has occurred. For peptides, the [P0]values are zero, indicating that no product is generated prior to turnover and therefore the ES2 intermediate involves a complex between enzyme and intact peptide substrate. For depsipeptides, [P0] values are 1 mol of produce per mole of enzyme over the entire temperature range -20 to -50 degrees C, indicating cleavage of the ester bond occurs prior to the rate-limiting step so that ES2 is more properly denoted by EP1P2, where P1 and P2 are the substrates for the reverse reaction. The rate-limiting step for depsipeptides thus involves release of the products which may occur directly or through a mandatory conformational change followed by rapid product release.  相似文献   

11.
The substrate specificity of phospholipid/Ca2+-dependent protein kinase (protein kinase C) was studied using synthetic peptides, in particular those corresponding to the amino acid sequence around serine 115 in bovine myelin basic protein (MBP). It was found that MBP (104-118) and MBP (104-123) were substrates for the enzyme, with apparent Km values of 14 and 10 microM, respectively. Neither MBP (111-118) nor MBP (111-123) were phosphorylated, indicating that an additional segment of sequence extending toward the N terminus, but not toward the C terminus, was essential for the substrate activity of the peptides. Of the alanine-substituted analogs examined, [Ala 105] MBP (104-118) was comparable to the parent peptide, whereas [Ala 107] MBP (104-118) and [Ala 113] MBP-(104-118) were much poorer substrates. These findings indicated that lysine 105 was not essential, but both arginine 107 and arginine 113 were important specificity determinants. Initial studies revealed that [Ala 113] MBP (104-118) inhibited phosphorylation by the enzyme of the parent peptide and, to a lesser extent, the intact MBP(1-170). Serine 115 was the only site phosphorylated in the analog peptides [Ala 105] MBP (104-118) and [Ala 107]MBP (104-118). In the parent peptide, serine 115 was the initial site of phosphorylation but after prolonged phosphorylation other sites became phosphorylated (serine 110 and/or serine 112), further supporting the concept that arginine residues act as essential substrate specificity determinants for phospholipid/Ca2+-dependent protein kinase.  相似文献   

12.
It has been shown for the first time that deacylation is the rate-limiting step in the enteropeptidase-catalyzed hydrolysis of highly effective oligopeptide substrates containing four Asp residues in positions P2–P5. On the other hand, the rate-limiting step in the hydrolysis of low-efficiency peptide substrates containing less than four Asp or Glu residues in positions P2–P5 is acylation, as it has previously been suggested for all amide and peptide substrates of serine proteases on the basis of classical works of Bender et al. The method of introduction of an additional nucleophile or another effector that selectively affects the deacylation step was used to determine the rate-limiting step in the enteropeptidase hydrolysis of N α-benzyloxycarbonyl-L-lysine thiobenzyl ester, the highly efficient amide substrate GlyAsp4-Lys β-naphthyl amide, and the low-efficiency peptide substrate VLSAADK-GNVKAAWG (where a hyphen denotes the hydrolysis site).  相似文献   

13.
Pre-steady-state and steady-state kinetics of the papain (EC 3.4.22.2)-catalyzed hydrolysis of N-alpha-carbobenzoxyglycine p-nitrophenyl ester (ZGlyONp) have been determined between pH 3.0 and 9.5 (I = 0.1 M) at 21 +/- 0.5 degrees C. The results are consistent with the minimum three-step mechanism involving the acyl X enzyme intermediate E X P: (Formula: see text). The formation of the E X S complex may be regarded as a rapid pseudoequilibrium process; the minimum values for k+1 are 8.0 microM-1 s-1 (pH less than or equal to 3.5) and 0.40 microM-1 s-1 (pH greater than 6.0), and that for k-1 is 600 s-1 (pH independent). The pH profile of k+2/Ks (= kcat/Km; Ks = k-1/k+1) reflects the ionization of two groups with pK' values of 4.5 +/- 0.1 and 8.80 +/- 0.15 in the free enzyme. The pH dependence of k+2 and k+3 (measured only at pH values below neutrality) implicates one ionizing group in the acylation and deacylation step with pK' values of 5.80 +/- 0.15 and 3.10 +/- 0.15, respectively. As expected from the pH dependences of k+2/Ks (= kcat/Km) and k+2, the value of Ks changes with pH from 7.5 X 10(1) microM (pH less than or equal to 3.5) to 1.5 X 10(3) microM (pH greater than 6.0). Values of k-2 and k-3 are close to zero over the whole pH range explored (3.0 to 9.5). The pH dependence of kinetic parameters indicates that at acid pH values (less than or equal to 3.5), the k+2 step is rate limiting in catalysis, whereas for pH values higher than 3.5, k+3 becomes rate limiting. The observed ionizations probably reflect the acid-base equilibria of residues involved in the catalytic diad of papain, His159-Cys25. Comparison with catalytic properties of ficins and bromelains suggests that the results reported here may be of general significance for cysteine proteinase catalyzed reactions.  相似文献   

14.
Various esters and amides of benzoylarginine and of benzyloxycarbonylarginine were subjected to enzymic hydrolysis at pH 8.5 and 7.2 by soybean trypsin-like enzyme (STLE). The kcat values for the hydrolysis of esters and amides were essentially identical regardless of the kind of leaving group. These results suggest that the STLE-catalyzed hydrolysis of ester and amide substrates proceeds via an acylenzyme intermediate and that the deacylation step is rate-determining. Hydrolysis of various 4-methylcoumaryl-7-amides of varying chain length and amino acid sequence was carried out at pH 8.5. Analysis of kinetic parameters revealed that STLE does not exhibit any remarkable subsite requirement, but somewhat preferentially hydrolyzes shorter substrates. These observations are consistent with the fact that STLE does not hydrolyze protein substrates or oxidized insulin B chain but hydrolyzes oligopeptides (Nishikata, M. (1984) J. Biochem. 95, 1169-1177). It is possible that the active site of STLE is located at a deep position in the enzyme molecule. From the pH dependency of kcat/Km, the participation of a histidine residue in the catalytic process of STLE was suggested.  相似文献   

15.
A multisubstrate Ca2+ and cyclic nucleotide independent kinase (Mr = 47,000) was purified from bovine aortic smooth muscle. Phosphorylation of glycogen synthase by this enzyme was polycation modulable. Low concentrations of polylysine (0.04-0.16 microM) stimulated phosphorylation 2-7 fold, whereas higher concentrations suppressed phosphorylation. Glycogen synthase converted to its glucose 6-PO4 dependent form following phosphorylation in either the presence (7 mol 32P/mol synthase) or absence (4 mol 32P/mol synthase) of polylysine: extent of conversion correlated to extent of phosphorylation. Seven of 14 potential substrates tested were phosphorylated: kinase activity was greatest for phosvitin followed by casein, the receptor protein from type 2 cAMP-kinase, histone H2b, phosphorylase kinase, glycogen synthase, and myocardial myosin light chains. Phosphorylation of phosvitin or synthase was inhibited by heparin (1/2 maximally by 0.5 microgram/ml without salt and 37 micrograms/ml with 150 mM NaCl). The results suggest that the enzyme may participate in regulating arterial glycogen metabolism and that such regulation may be modulated by polycationic and polyanionic effectors.  相似文献   

16.
A phospholipid-sensitive Ca2+-dependent protein kinase was purified to homogeneity, for the first time, from extracts of pig spleen, employing the steps of DEAE-cellulose, octyl-agarose, Sephacryl S-200 and phosphatidylserine-Affigel 10 affinity chromatographies. The purified enzyme appeared as a single protein band on both analytical (non-denaturing) and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, having a minimum mol.wt. of 68 000 +/- 200. The molecular weight of the enzyme was also determined to be 74 500 +/- 4600 by gel filtration and 80 000 based on its sedimentation coefficient (5.52 S) and Stokes radius (3.52 +/- 0.09 nm), indicating that the enzyme was a monomeric protein. The frictional ratio (f/f0) of the enzyme was 1.24, indicating it was non-globular in shape. The enzyme had a pI of 5.3, and a pH optimum of 6.5 for its reaction. Amino acid analysis indicated that the enzyme apparently was not similar to myosin light-chain kinase (a calmodulin-sensitive species of Ca2+-dependent protein kinase) or cyclic AMP-dependent and cyclic GMP-dependent protein kinases. The enzyme had an apparent Km for ATP of 7.5 microns. Histone H1 and myelin basic protein were effective substrates for the enzyme, with apparent Km values of 0.3 and 0.2 microns, and Vmax, values of 0.06 and 0.09 mumol/min per mg of enzyme respectively. The enzyme activity was dependent on both phosphatidylserine (apparent Ka = 6.25 micrograms/ml) and Ca2+ (apparent Ka = 160 microns). Calmodulin was unable to substitute for the phospholipid as a cofactor, nor was it a subunit of the enzyme. Sr2+ and Ba2+ could partially mimic Ca2+ to activate the enzyme in the presence of phosphatidylserine. An endogenous substrate protein (mol.wt. 41 000) for the enzyme was found in the total, solubilized fraction of pig spleen. Monoclonal antibodies against the enzyme interacted similarly with the homogeneous and impure enzyme; the antibodies, however, did not bind to cyclic nucleotide-dependent protein kinases.  相似文献   

17.
Recombinant pyrophosphatase from the hyperthermophilic archaebacterium Sulfolobus acidocaldarius (S-PPase) has been heterologously expressed in Escherichia coli and could be purified in large quantities. S-PPase, previously described as a tetrameric enzyme, was shown to be a homohexameric protein that had catalytic activity with Mg2+ > Zn2+ > Co2+ > Mn2+ > Ni2+, Ca2+. CD and FTIR spectra demonstrate a similar overall fold for S-PPase and PPases from E. coli (E-PPase) and Thermus thermophilus (T-PPase). The relative proportions of secondary structure elements in S-PPase are close to those of a previously proposed model. S-PPase is extremely heat resistant. Even at 95 degrees C the half-life of catalytic activity is 2.5 h, which is dramatically increased in the presence of divalent cations. More than one Mg2+ per monomer is needed for catalysis, but no more than one Mg2+ per monomer is sufficient for thermal stabilization. The Tm values for S-PPase are 89 degrees C (+EDTA), 99 degrees C (+Mg2+), and >100 degrees C (+Mn2+), compared to 58 degrees C (+EDTA), 84 degrees C (+Mg2+), and 93 degrees C (+Mn2+) for E-PPase and 86 degrees C (+EDTA), 99 degrees C (+Mg2+), and 96 degrees C (+Mn2+) for T-PPase. The guanidium hydrochloride-induced unfolding follows an unknown mechanism with a biphasic kinetic and an unstable intermediate. Unfolding curves of the S-, E-, and T-PPase are independent of the method applied (CD spectroscopy and fluorescence) and show a sigmoidal and monophasic transition, indicating a change in global structure during unfolding, which can be described by a two-state process comprising dissociation and denaturation of the folded hexamer into six monomers. The respective DeltaGN-->D(25 degrees C) values of the three PPases vary from 220 to 290 kJ/mol for the overall process and are not significantly higher for the two thermophilic PPases. The stabilizing effect of Mg2+ DeltaDeltaG(25 degrees C) is 16 kJ/mol for E-PPase and 5.5-8 kJ/mol for S-PPase and T-PPase.  相似文献   

18.
Kinetic constants for the hydrolysis by porcine tissue beta-kallikrein B and by bovine trypsin of a number of peptides related to the sequence of kininogen (also one containing a P2 glycine residue instead of phenylalanine) and of a series of corresponding arginyl peptide esters with various apolar P2 residues have been determined under strictly comparative conditions. kcat and kcat/Km values for the hydrolysis of the Arg-Ser bonds of the peptides by trypsin are conspicuously high. kcat for the best of the peptide substrates, Ac-Phe-Arg-Ser-Val-NH2, even reaches kcat for the corresponding methyl ester, indicating rate-limiting deacylation also in the hydrolysis of a peptide bond by this enzyme. kcat/Km for the hydrolysis of the peptide esters with different nonpolar L-amino acids in P2 is remarkably constant (range 1.7), as it is for the pair of the above pentapeptides with P2 glycine or phenylalanine. kcat for the ester substrates varies fivefold, however, being greatest for the P2 glycine compounds. Obviously, an increased potential of a P2 residue for interactions with the enzyme lowers the rate of deacylation. In contrast to results obtained with chymotrypsin and pancreatic elastase, trypsin is well able to tolerate a P3 proline residue. In the hydrolysis of peptide esters, tissue kallikrein is definitely superior to trypsin. Conversely, peptide bonds are hydrolyzed less efficiently by tissue kallikrein and the acylation reaction is rate-limiting. The influence of the length of peptide substrates is similar in both enzymes and indicates an extension of the substrate recognition site from subsite S3 to at least S'3 of tissue kallikrein and the importance of a hydrogen bond between the P3 carbonyl group and Gly-216 of the enzymes. Tissue kallikrein also tolerates a P3 proline residue well. In sharp contrast to the behaviour of trypsin is the very strong influence of the P2 residue in tissue-kallikrein-catalyzed reactions. kcat/Km varies 75-fold in the series of the dipeptide esters with nonpolar L-amino acid residues in P2, a P2 glycine residue furnishing the worst and phenylalanine the best substrate, whereas this exchange in the pentapeptides changes kcat/Km as much as 730-fold. This behaviour, together with the high value of kcat/Km for Ac-Phe-Arg-OMe of 3.75 X 10(7) M-1 s-1, suggests rate-limiting binding (k1) in the hydrolysis of the best ester substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Presteady state and steady state analyses of the alpha-chymotrypsin [EC 3.4.21.1]-catalyzed hydrolysis of three specific ester substrates and three ring-substituted derivatives were carried out to elucidate the effect of hydrophobic interactions due to the different side chains of the substrates on the individual steps of the reaction. Hydrolysis of all the substrates except for N alpha-acetyl-Nin-formyltryptophan methyl ester (Ac-Trp(CHO)-OMe) was controlled by the deacylation rate. In spite of their comparable Ks values, the substrates with small kcat, such as N alpha-acetyltryptophan methyl ester and N alpha-acetyl-2-(2-nitro-4-carboxyphenylsufenyl)-tryptophan methyl ester, characteristically gave Km values one order of magnitude smaller than the others. For the reaction of Ac-Trp(CHO)-OMe, it was ascertained that the deacylation step was not rate-controlling. It is suggested that the acylation step controls the rate in this case.  相似文献   

20.
Studies of the proton-transfer reaction by Pseudomonas testosteroni 3-oxo steroid Delta(4)-Delta(5)-isomerase with Delta(5(6))- and Delta(5(10))-steroid substrates demonstrate the importance of the position of the double bond for the efficiency of the isomerization process. Thus 3-oxo-Delta(5(6))-substrates have markedly high k(cat.) values, whereas those of 3-oxo-Delta(5(10))-substrates are very low and their apparent K(m) values approach equilibrium dissociation constants. The first step in the isomerization process is: [Formula: see text] which is governed by the k(-1)/k(+1) ratio and is shown to be very similar for the two classes of substrates (3-oxo-Delta(5(6))- and -Delta(5(10))-steroids). They therefore differ in the steps distal to the initial formation of the Michaelis-Menten complex. The use of the deuterated androst-5(6)-ene-3,17-dione substrate enabled us to calculate individual rate constants k(+1) and k(-1) as well as to determine the apparent rate-limiting step in the isomerization process. With the deuterated oestr-5(10)-ene-3,17-dione substrate, no significant isotope effect was observed suggesting that a different rate-limiting step may be operative in this isomerization process. Data are presented that indicate that under optimal concentrations of the efficient androst-5(6)-ene-3,17-dione substrate, the forward reaction for ES complex formation (as defined by k(+1)) is limited only by diffusion and the apparent K(m) does not approach the equilibrium constant, suggesting that the evolution of this enzyme has proceeded close to ;catalytic perfection'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号