首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Pseudomonas syringae pv. glycinea PG4180 produces the polyketide phytotoxin coronatine. The coronatine synthesis genes in PG4180 were previously shown to reside on a 90-kb plasmid designated p4180A. In the present study, clones containing a 34-kb region of p4180A were saturated with Tn5, and 71 unique mutations were recombined into p4180A by marker exchange. The effect of each mutation on coronatine synthesis was determined by analyzing the organic acids produced by the mutants by reverse-phase high-performance liquid chromatography. The organic acids of selected mutants were derivatized to their methyl esters and analyzed by gas chromatography and gas chromatography-mass spectrometry. Mutations in a 20.5-kb region of p4180A completely blocked the synthesis of coronafacic acid and coronatine. Mutations within a 4.4-kb region of p4180A prevented the formation of coronatine but allowed for production of coronafacic acid, coronafacoylvaline, coronafacoylisoleucine, and coronafacoylalloisoleucine. The phenotypes of selected mutants were further confirmed in feeding experiments in which coronafacic acid or coronamic acid was added to the culture media. The results of this study allow us to speculate on the likely sequence of steps in the later stages of coronatine biosynthesis.  相似文献   

6.
Pseudomonas syringae pv. glycinea PG4180 causes bacterial blight of soybean and produces the phytotoxin coronatine (COR) in a temperature-dependent manner. COR consists of a polyketide, coronafacic acid (CFA), and an amino acid derivative, coronamic acid, and is produced optimally at 18 degrees C whereas no detectable synthesis occurs at 28 degrees C. We investigated the impact of temperature on PG4180 during compatible and incompatible interactions with soybean and tobacco plants, respectively. After spray inoculation, PG4180 caused typical bacterial blight symptoms on soybean plants when the bacteria were grown at 18 degrees C prior to inoculation but not when derived from cultures grown at 28 degrees C. The disease outcome was quantified by determination of bacterial populations in planta. The temperature effect was not observed when PG4180 was artificially infiltrated into soybean leaves, indicating that the pre-inoculation temperature and phytotoxin synthesis were important for bacterial invasion via natural plant openings. In the incompatible interaction, PG4180 elicited the hypersensitive response (HR) on tobacco plants regardless of the bacterial pre-inoculation temperature. However, the HR was significantly delayed when tobacco plants were treated with cells of the CFA-overproducing derivative, PG4180.N9, which were derived from cultures grown at 18 degrees C, compared with parallels incubated at 28 degrees C. CFA biosynthesis by PG4180.N9 was optimal at 18 degrees C and negligible at 28 degrees C. The impact of CFA synthesis on the HR was studied with different growth media, mutants, and transconjugants of PG4180, indicating that the amount of synthesized CFA but not that of COR influenced the outcome of the HR. Feeding experiments with purified coronafacoyl compounds suggested that the observed delay of the HR was mediated by CFA, shedding further light on CFA's putative role as a molecular mimic of the plant signaling molecule, jasmonic acid.  相似文献   

7.
8.
The chlorosis-inducing phytotoxin coronatine is produced by several Pseudomonas syringae pathovars, including glycinea, morsprunorum, atropurpurea, and the closely related tomato and maculicola. To date, all coronatine-producing pv. glycinea, morsprunorum, and atropurpurea strains that have been examined carry the gene cluster that controls toxin production on a large plasmid. In the present study the genomic location of the coronatine gene cluster was determined for coronatine-producing strains of the pv. tomato-maculicola group by subjecting their genomic DNA to pulsed-field electrophoresis and Southern blot analysis with a hybridization probe from the coronatine gene cluster. The cluster was chromosomally borne in 10 of the 22 strains screened. These 10 strains infected both crucifers and tomatoes but could not use sorbitol as a sole source of carbon. The remaining 12 coronatine-producing strains had plasmid-borne toxin gene clusters and used sorbitol as a carbon source. Only one of these strains was pathogenic on both crucifers and tomatoes; the remainder infected just tomatoes. Restriction fragment length polymorphism analysis of the pv. tomato-maculicola coronatine gene clusters was performed with probes from P. syringae pv. tomato DC3000, a tomato and crucifer pathogen. Although the coronatine cluster appeared, in general, to be highly conserved across the pv. tomato-maculicola group, there were significant differences between plasmid-borne and chromosomally borne genes. The extensively studied coronatine cluster of pv. glycinea 4180 closely resembled the plasmid-borne clusters of the pv. tomato-maculicola group.  相似文献   

9.
10.
Production of the chlorosis-inducing phytotoxin coronatine in the Pseudomonas syringae pathovars atropurpurea, glycinea, maculicola, morsprunorum, and tomato has been previously reported. DNA hybridization studies previously indicated that the coronatine biosynthetic gene cluster is highly conserved among P. syringae strains which produce the toxin. In the present study, two 17-bp oligonucleotide primers derived from the coronatine biosynthetic gene cluster of P. syringae pv. glycinea PG4180 were investigated for their ability to detect coronatine-producing P. syringae strains by PCR analysis. The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae. The 0.65-kb products were not detected when PCR experiments utilized nucleic acids of nonproducers of coronatine or those of bacteria not previously investigated for coronatine production. When the 0.65-kb PCR products were digested with ClaI, PstI, and SmaI, fragments of identical size were obtained for the five different pathovars of P. syringae. A restriction fragment length polymorphism was detected in the amplified region of P. syringae pv. atropurpurea, since this pathovar lacked a conserved PvuI site which was detected in the PCR products of the other four pathovars. The 0.65-kb PCR products from six strains comprising five different pathovars of P. syringae were cloned and sequenced. The PCR products from two different P. syringae pv. glycinea strains contained identical DNA sequences, and these showed relatedness to the sequence obtained for the pathovar morsprunorum. The PCR products obtained from the pathovars maculicola and tomato were the most similar to each other, which supports the hypothesis that these two pathovars are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Many plant pathogens suppress antimicrobial defenses using virulence factors that modulate endogenous host defenses. The Pseudomonas syringae phytotoxin coronatine (COR) is believed to promote virulence by acting as a jasmonate analog, because COR-insensitive 1 (coil) Arabidopsis thaliana and tomato mutants are impaired in jasmonate signaling and exhibit reduced susceptibility to P. syringae. To further investigate the role of jasmonate signaling in disease development, we analyzed several jasmonate-insensitive A. thaliana mutants for susceptibility to P. syringae pv. tomato strain DC3000 and sensitivity to COR. Jasmonate-insensitive 1 (jin1) mutants exhibit both reduced susceptibility to P. syringae pv. tomato DC3000 and reduced sensitivity to COR, whereas jasmonate-resistant 1 (jar1) plants exhibit wild-type responses to both COR and P. syringae pv. tomato DC3000. A jin1 jar1 double mutant does not exhibit enhanced jasmonate insensitivity, suggesting that JIN1 functions downstream of jasmonic acid-amino acid conjugates synthesized by JAR1. Reduced disease susceptibility in jin1 mutants is correlated with elevated expression of pathogenesis-related 1 (PR-1) and is dependent on accumulation of salicylic acid (SA). We also show that JIN1 is required for normal P. syringae pv. tomato DC3000 symptom development through an SA-independent mechanism. Thus, P. syringae pv. tomato DC3000 appears to utilize COR to manipulate JIN1-dependent jasmonate signaling both to suppress SA-mediated defenses and to promote symptom development.  相似文献   

12.
13.
Expression profiling of wild-type plants and mutants with defects in key components of the defense signaling network was used to model the Arabidopsis network 24 h after infection by Pseudomonas syringae pv. maculicola ES4326. Results using the Affymetrix ATH1 array revealed that expression levels of most pathogen-responsive genes were affected by mutations in coi1, ein2, npr1, pad4, or sid2. These five mutations defined a small number of different expression patterns displayed by the majority of pathogen-responsive genes. P. syringae pv. tomato strain DC3000 elicited a much weaker salicylic acid (SA) response than ES4326. Additional mutants were profiled using a custom array. Profiles of pbs3 and ndr1 revealed major effects of these mutations and allowed PBS3 and NDR1 to be placed between the EDS1/PAD4 node and the SA synthesis node in the defense network. Comparison of coi1, dde2, and jar1 profiles showed that many genes were affected by coi1 but very few were affected by dde2 or jar1. Profiles of coi1 plants infected with ES4326 were very similar to those of wild-type plants infected with bacteria unable to produce the phytotoxin coronatine, indicating that, essentially, all COI1-dependent gene expression changes in this system are caused by coronatine.  相似文献   

14.
15.
Li H  Ullrich MS 《Journal of bacteriology》2001,183(11):3282-3292
In the plant pathogen Pseudomonas syringae pv. glycinea PG4180 and other bacterial species, synthesis of the exopolysaccharide levan is catalyzed by the extracellular enzyme levansucrase. The results of Southern blotting and PCR analysis indicated the presence of three levansucrase-encoding genes in strain PG4180: lscA, lscB, and lscC. In this study, lscB and lscC were cloned from a genomic library of strain PG4180. Sequence analysis of the two lsc genes showed that they were virtually identical to each other and highly similar to the previously characterized lscA gene. lscA and lscC had a chromosomal location, whereas lscB resided on an indigenous plasmid of PG4180. Mutants with impaired expression of individual lsc genes and double mutants were generated by marker exchange mutagenesis. Determination of levansucrase activities in these mutants revealed that the lscB gene product was secreted but not that of lscA or lscC. Our results indicated that lscB and lscC but not lscA contributed to periplasmic levan synthesis of PG4180. The lscB lscC double mutant was completely defective in levan formation and could be complemented by either lscB or lscC. Our data suggested a compartment-specific localization of two lsc gene products, with LscB being the secreted, extracellular enzyme and LscC being the predominantly periplasmic levansucrase. Results of Western blot analyses indicated that lscA was not expressed and that lscA was not associated with levansucrase activities in any particular protein fraction. LscA could be detected in PG4180 only when transcribed from the vector-borne P(lac) promoter. PCR screening in various P. syringae strains with primers derived from the three characterized lsc genes demonstrated the presence of multiple Lsc isoenzymes in other P. syringae pathovars.  相似文献   

16.
The plant apoplast is the intercellular space that surrounds plant cells, in which metabolic and physiological processes relating to cell wall biosynthesis, nutrient transport, and stress responses occur. The apoplast is also the primary site of infection for hemibiotrophic pathogens such as P. syringae, which obtain nutrients directly from apoplastic fluid. We have used apoplastic fluid extracted from healthy tomato leaves as a growth medium for Pseudomonas spp. in order to investigate the role of apoplastic nutrients in plant colonization by Pseudomonas syringae. We have confirmed that apoplast extracts mimic some of the environmental and nutritional conditions that bacteria encounter during apoplast colonization by demonstrating that expression of the plant-induced type III protein secretion pathway is upregulated during bacterial growth in apoplast extracts. We used a modified phenoarray technique to show that apoplast-adapted P. syringae pv. tomato DC3000 expresses nutrient utilization pathways that allow it to use sugars, organic acids, and amino acids that are highly abundant in the tomato apoplast. Comparative analyses of the nutrient utilization profiles of the genome-sequenced strains P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, P. syringae pv. phaseolicola 1448A, and the unsequenced strain P. syringae pv. tabaci 11528 with nine other genome-sequenced strains of Pseudomonas provide further evidence that P. syringae strains are adapted to use nutrients that are abundant in the leaf apoplast. Interestingly, P. syringae pv. phaseolicola 1448A lacks many of the nutrient utilization abilities that are present in three other P. syringae strains tested, which can be directly linked to differences in the P. syringae pv. phaseolicola 1448A genome.  相似文献   

17.
Nitrilase enzymes catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have been identified in plants, bacteria and fungi. There is mounting evidence to support a role for nitrilases in plant–microbe interactions, but the activity of these enzymes in plant pathogenic bacteria remains unexplored. The genomes of the plant pathogenic bacteria Pseudomonas syringae pv. syringae B728a and Pseudomonas syringae pv. tomato DC3000 contain nitrilase genes with high similarity to characterized bacterial arylacetonitrilases. In this study, we show that the nitrilase of P. syringae pv. syringae B728a is an arylacetonitrilase, which is capable of hydrolysing indole-3-acetonitrile to the plant hormone indole-3-acetic acid, and allows P. syringae pv. syringae B728a to use indole-3-acetonitrile as a nitrogen source. This enzyme may represent an additional mechanism for indole-3-acetic acid biosynthesis by P. syringae pv. syringae B728a, or may be used to degrade and assimilate aldoximes and nitriles produced during plant secondary metabolism. Nitrilase activity was not detected in P. syringae pv. tomato DC3000, despite the presence of a homologous nitrilase gene. This raises the interesting question of why nitrilase activity has been retained in P. syringae pv. syringae B728a and not in P. syringae pv. tomato DC3000.  相似文献   

18.
19.
20.
To identify Pseudomonas syringae pv. tomato genes involved in pathogenesis, we carried out a screen for Tn5 mutants of P. syringae pv. tomato DC3000 with reduced virulence on Arabidopsis thaliana. Several mutants defining both known and novel virulence loci were identified. Six mutants contained insertions in biosynthetic genes for the phytotoxin coronatine (COR). The P. syringae pv. tomato DC3000 COR genes are chromosomally encoded and are arranged in two separate clusters, which encode enzymes responsible for the synthesis of coronafacic acid (CFA) or coronamic acid (CMA), the two defined intermediates in COR biosynthesis. High-performance liquid chromatography fractionation and exogenous feeding studies confirmed that Tn5 insertions in the cfa and cma genes disrupt CFA and CMA biosynthesis, respectively. All six COR biosynthetic mutants were significantly impaired in their ability to multiply to high levels and to elicit disease symptoms on A. thaliana plants. To assess the relative contributions of CFA, CMA, and COR in virulence, we constructed and characterized cfa6 cmaA double mutant strains. These exhibited virulence phenotypes on A. thalliana identical to those observed for the cmaA or cfa6 single mutants, suggesting that reduced virulence of these mutants on A. thaliana is caused by the absence of the intact COR toxin. This is the first study to use biochemically and genetically defined COR mutants to address the role of COR in pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号