首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Microbiological analysis of soils from a polycyclic aromatic hydrocarbon (PAH)-contaminated site resulted in the enrichment of five microbial communities capable of utilizing pyrene as a sole carbon and energy source. Communities 4 and 5 rapidly degraded a number of different PAH compounds. Three pure cultures were isolated from community 5 using a spray plate method with pyrene as the sole carbon source. The cultures were identified as strains of Burkholderia ( Pseudomonas ) cepacia on the basis of biochemical and growth tests. The pure cultures (VUN 10 001, VUN 10 002 and VUN 10 003) were capable of degrading fluorene, phenanthrene and pyrene (100 mg l−1) to undetectable levels within 7–10 d in standard serum bottle cultures. Pyrene degradation was observed at concentrations up to 1000 mg l−1. The three isolates were also able to degrade other PAHs including fluoranthene, benz[ a ]anthracene and dibenz[ a , h ]anthracene as sole carbon and energy sources. Stimulation of dibenz[ a , h ]anthracene and benzo[ a ]pyrene degradation was achieved by the addition of small quantities of phenanthrene to cultures containing these compounds. Substrate utilization tests revealed that these micro-organisms could also grow on n -alkanes, chlorinated- and nitro-aromatic compounds.  相似文献   

2.
Polar, ethyl acetate soluble metabolites formed in incubations of dibenz[a,c]-anthracene (DB[a,c]A), dibenz[a,h]anthracene (DB[a,h]A) and the related DB[a,h]A 3,4-diol and dibenz[a,j]anthracene (DB[a,j]A) with 3-methylcholanthrene (3-MC)-induced rat liver microsomal preparations have been separated by HPLC and examined using fluorescence, UV and NMR spectroscopy. Metabolites with spectral properties consistant with their identification as the 3,4:8,9-bis-diol of DB[a,j]A and a 1,2,3,4,12,13-hexol derived from DB[a,c]A were found. DB[a,h]A was metabolized to three polar products identified as the 3,4:10,11-bis-diol and the related 1,2,3,4,8,9- and 1,2,3,4,10,11-hexols, which were also formed, together with the related 1,2,3,4-tetrol, from the DB[a,h]A 3,4-diol. The possible role of bis-diols in the metabolic activation of these three dibenzanthracenes is discussed.  相似文献   

3.
1. The main products of the metabolism of 7,12-dimethylbenz[a]anthracene by rat-liver homogenates are the isomeric monohydroxymethyl derivatives. The syntheses of these compounds are described. 2. Two phenolic products and two dihydrodihydroxy compounds were formed, but none of these appeared to have been formed by hydroxylation at the `K region''. There was little evidence for the formation of a glutathione conjugate of the hydrocarbon. 3. The monohydroxymethyl derivatives are products of the hydroxylation of the hydrocarbon in the ascorbic acid–Fe2+–oxygen model hydroxylating system.  相似文献   

4.
The syntheses of 10,11-dihydrobenz[a]anthracene 8,9-oxide, benz[a]anthracene 8,9-oxide and 9-hydroxybenz[a]anthracene are described, together with those of a number of related compounds. The epoxides react both chemically and enzymically with water to yield the corresponding dihydrodiols and with reduced glutathione to form glutathione conjugates, and they react chemically with N-acetylcysteine to yield the corresponding mercapturic acids. 8,9-Dihydro-8,9-dihydroxybenz[a]anthracene, formed enzymically from benz[a]anthracene 8,9-oxide, was identical with a dihydrodiol formed when benz[a]anthracene was metabolized by rat liver homogenates. Similarly 10,11-dihydrobenz[a]anthracene 8,9-oxide yielded a dihydrodiol identical with the product formed when 10,11-dihydrobenz[a]anthracene was metabolized.  相似文献   

5.
The formation of trans-dihydrodiols from dibenz[a,c]anthracene, dibenz[a,h]anthracene and chrysene by chemical oxidation in an ascorbic acid-ferrous sulphate-EDTA system and by rat-liver microsomal fractions has been studied using a combination of thin-layer (TLC) and high pressure liquid chromatography (HPLC) to separate the mixtures of isomeric dihydrodiols. The 1,2- and 3,4-dihydrodiols of dibenz[a,c]anthracene, the 1,2-,3,4- and 5,6-dihydrodiols of dibenz[a,h]anthracene and the 1,2-, 3,4- and 5,6-dihydrodiols of chrysene were formed in chemical oxidations. These dihydrodiols were also formed when the three parent hydrocarbons were metabolized by rat-liver microsomal fractions and, in addition, dibenz[a,c]anthracene yielded the 10,11-dihydrodiol. The 1,2- and 3,4-dihydrodiols of dibenz[a,c]anthracene have not been reported previously either as metabolites of the hydrocarbon or as products of chemical syntheses and the 5,6-dihydrodiol of chrysene was not detected in earlier metabolic studies.  相似文献   

6.
Early carcinogenicity tests found no evidence of activity for picene but found considerable initiating and carcinogenic activity for dibenz[a,h]anthracene (DBA). More recent investigation suggested that both pentacyclics were complete carcinogens when administered as single sc injections in NMRI mice, despite findings that picene acted as neither an initiating nor promoting agent. To investigate this contradiction, the complete carcinogenicities of both isomers were compared by sc injection in female Sprague-Dawley rats. The results demonstrate that 1 micromol of DBA, administered three times weekly for 20 doses, induces sarcomas in all test animals by 33 weeks (100%). Similar treatment with picene did not induce sarcoma in any test animals by 37 weeks (0%). The present results agree with the earlier studies. It follows from these results that the predictions of the unified theory for the appearance of carcinogenic properties following administration of picene and dibenz[a,h]anthracene to test animals have been confirmed.  相似文献   

7.
Large inocula of Stenotrophomonas maltophilia VUN 10,003 were used to investigate bacterial degradation of benzo[a]pyrene and dibenz[a,h]anthracene. Although strain VUN 10,003 was capable of degrading 10–15 mg l−1 of the five-ring compounds in the presence of pyrene after 63 days, further addition of pyrene after degradation of the five-ring polycyclic aromatic hydrocarbons (PAHs) ceased did not stimulate significant decreases in the concentration of benzo[a]pyrene or dibenz[a,h]anthracene. However, pyrene was degraded to undetectable levels 21 days after its addition. The amount of benzo[a]pyrene and dibenz[a,h]anthracene degraded by strain VUN 10,003 was not affected by the initial concentration of the compounds when tested at 25–100 mg l−1, by the accumulation of by-products from pyrene catabolism or a loss of ability by the cells to catabolise benzo[a]pyrene or dibenz[a,h]anthracene. Metabolite or by-product repression was suspected to be responsible for the inhibition: By-products from the degradation of the five-ring compounds inhibited their further degradation. Journal of Industrial Microbiology & Biotechnology (2002) 28, 88–96 DOI: 10.1038/sj/jim/7000216 Received 30 January 2001/ Accepted in revised form 10 October 2001  相似文献   

8.
1. 7,12-Dimethylbenz[a]anthracene is converted by rat-liver homogenates into products with the properties of the 7- and 12-hydroxymethyl derivatives, the 7,12-dihydroxymethyl derivative, the related carboxylic acids and ring-hydroxylated products such as the 8,9-dihydro-8,9-dihydroxy derivative and phenols. Ring-hydroxylated products and products arising from the further oxidation of the hydroxymethyl groups were formed when the hydroxymethyl derivatives were themselves incubated with rat-liver homogenates. 2. Pretreatment of the animal with 3-methylcholanthrene or with Sudan III, which can protect rat adrenal glands from damage by 7,12-dimethylbenz[a]anthracene or by its 7-hydroxymethyl derivative, led to an increased rate of metabolism of 7,12-dimethylbenz[a]anthracene and its hydroxymethyl derivatives. The metabolic routes mainly affected were those involving the formation of ring-hydroxylated products. 3. Pretreatment with phenobarbitone led to a small increase in the rate of metabolism of the hydrocarbon and of its hydroxymethyl derivatives, but the increase appeared mainly to involve increased metabolism of the methyl and hydroxymethyl groups. 4. Pretreatment with metyrapone increased the rate of metabolism of the hydrocarbon mainly by increasing the amounts of products resulting from hydroxylation of the methyl groups: small increases in the amounts of ring-hydroxylated products were also produced. 8. Of a number of hydrocarbons and of derivatives of 3-methylcholanthrene tested as enzyme inducers, 3-methylcholanthrene itself was the most effective.  相似文献   

9.
Polar, ethyl acetate soluble metabolites formed in incubations of dibenz[a,c]-anthracene (DB[a,c]A), dibenz[a,h]anthracene (DB[a,h]A) and the related DB[a,h]A 3,4-diol and dibenz[a,j]anthracene (DB[a,j]A) with 3-methylcholanthrene (3-MC)-induced rat liver microsomal preparations have been separated by HPLC and examined using fluorescence, UV and NMR spectroscopy. Metabolites with spectral properties consistant with their identification as the 3,4:8,9-bis-diol of DB[a,j]A and a 1,2,3,4,12,13-hexol derived from DB[a,c]A were found. DB[a,h]A was metabolized to three polar products identified as the 3,4:10,11-bis-diol and the related 1,2,3,4,8,9- and 1,2,3,4,10,11-hexols, which were also formed, together with the related 1,2,3,4-tetrol, from the DB[a,h]A 3,4-diol. The possible role of bis-diols in the metabolic activation of these three dibenzanthracenes is discussed.  相似文献   

10.
Experiments were performed to investigate the effects of 3 polycyclic aromatic hydrocarbons, benz[a]anthracene, dibenz[a,c]anthracene and dibenz[a,h]anthracene and K-regio epoxides and some of their related dihydrodiols on the chromosomes of Chinese hamster ovary cells in vitro. Of the 3 hydrocarbons only benz[a]anthracene showed any activity in inducing sister-chromatid exchanges. The K-region epoxide and the 3,4-dihydrodiol have been found to be more active than the corresponding K-region or the other non K-region dihydrodiols derived from benz[a]anthracene. Athough dibenz[a,c]anthracene was almost inactive, the K-region 5,6-epoxide and all 3 possible dihydrodiols, the 1,2-, 3,4- and 10,11-diols were active in inducing increased numbers of sister-chromatid exchanges in the chromosomes of these cells. The 3,4-dihydrodiol of dibenz[a,h]anthrecene was also active in inducing sister-chromatid exchanges whereas the 1,2- and 5,6-dihydrodiols were only weakly active. This study provides some support for the suggestiion that the activation of these 3 hydrocarbons proceeds by the metabolic conversion of non K-region dihydrodiols into vicinal diol-epoxides.  相似文献   

11.
12.
13.
The synthesis of dibenz[a,c]anthracene 10,11-oxide is described. The oxide was unstable and was rapidly decomposed with cold mineral acid into a mixture of 10- and 11- hydroxydibenz[a,c]anthracene. The oxide was converted by rat liver microsomal preparations and homogenates into a product that is probably 10,11-dihydro-10,11-dihydroxydibenz[a,c]anthracene and which was identical with the metabolite formed when dibenz[a,c]anthracene was metabolized by rat liver homogenates. The oxide did not react either chemically or enzymically with GSH. 10,11-Dihydrodibenz[a,c]anthracene and 10,11-dihydrodibenz[a,c]anthracene 12,13-oxide were both metabolized by rat liver preparations into trans-10,11,12,13-tetrahydro-10,11-dihydroxydibenz[a,c] anthracene and the oxide was converted chemically into this dihydroxy compound, and it reacted chemically but not enzymically with GSH. In the alkylation of 4-(p-nitrobenzyl)pyridine, the ;K-region' epoxide, dibenz[a,h]anthracene 5,6-oxide, was more active than either dibenz[a,c]anthracene 10,11-oxide or 10,11-dihydrobenz[a,c]anthracene 12,13-oxide.  相似文献   

14.
The metabolism of 3H-labelled 7,12-dimethylbenz[a]anthracene (DMBA) and of 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA) into solvent- and water-soluble and protein-bound derivatives has been examined in rat liver and adrenal homogenates and in rat adrenocortical cells in culture. Although the overall extents of metabolism of the substrates by the two types of homogenate were similar, there was twice as much binding to protein in incubations with the 7-hydroxymethyl derivative. Rat adrenal cells in culture metabolized DMBA more extensively than 7-OHM-12-MBA and converted much more of the parent hydrocarbon into water-soluble derivatives. Both hydrocarbons were metabolized to yield dihydrodiols that were separated and identified by high performance liquid chromatography (HPLC). The 8,9-dihydrodiol was the major dihydrodiol formed from DMBA but, with 7-OHM-12-MBA as substrate, metabolism was diverted to the 10,11- and 3,4-positions in adrenal and hepatic preparations respectively. The viability of rat adrenocortical cells in culture, as measured by trypan blue exclusion, did not appear to be affected by treatment with DMBA, 7-OHM-12-MBA, the sulphate ester of 7-OHM-12-MBA or by 3,4-dihydro-3,4-dihydroxy-7-hydroxymethyl-12-methylbenz[a]anthracene.  相似文献   

15.
Mouse skin and human skin have been treated in vivo or in short-term organ culture with dibenz[a,h]anthracene (DB[a,h]A), the related 3,4- or 5,6-diols or the anti- or syn-3,4-diol 1,2-oxides. DNA hydrolysates have been 32P-postlabelled and the adducts present examined by HPLC using a phenyl-modified reverse phase column and, for comparison, by PEI-cellulose TLC and autoradiography. The adducts formed when the diol-epoxides were reacted with salmon sperm DNA were also examined. The results show that in mouse skin treated in vivo, the major adducts formed from DB[a,h]A and the 3,4-diol were the same and that two of them were more polar than those formed in skin or in DNA that had been treated with the related anti- or syn-diol epoxides. Human skin treated with DB[a,h]A in culture yielded an adduct profile that was qualitatively similar to the profiles obtained with mouse skin.  相似文献   

16.
When benz[a] anthracene was oxidised in a reaction mixture containing ascorbic acid, ferrous sulphate and EDTA, the non-K-region dihydrodiols, trans-1,2-dihydro-1,2-dihydroxybenz[a] anthracene and trans-3,4-dihydro-3,4-dihydroxybenz[a] anthracene together with small amounts of the 8,9- and 10,11-dihydrodiols were formed. When oxidised in a similar system, 7,12-dimethylbenz[a] anthracene yielded the K-region dihydrodiol, trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and the non-K-region dihydrodiols, trans-3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-8,9-dihydro-8,9-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-10,11-dihydro-10,11-dihydroxy-7,12-dimethylbenz[a] anthracene and a trace of the 1,2-dihydrodiol. The structures and sterochemistry of the dihydrodiols were established by comparisons of their UV spectra and chromatographic characteristics using HPLC with those of authentic compounds or, when no authentic compounds were available, by UV, NMR and mass spectral analysis. An examination by HPLC of the dihydrodiols formed in the metabolism, by rat-liver microsomal fractions, of benz[a] anthracene and 7,12-dimethylbenz[a] anthracene was carried out. The metabolic dihydriols were identified by comparisons of their chromatographic and UV or fluorescence spectral characteristics with compounds of known structures. The principle metabolic dihydriols formed from both benz[a] anthracene and 7,12-dimethylbenz[a] anthracene were the trans-5,6- and trans-8,9-dihydrodiols. The 1,2- and 10,11-dihydrodiols were identified as minor products of the metabolism of benz [a] anthracene and the tentative identification of the trans-3,4-dihydriol as a metabolite was made from fluorescence and chromatographic data. The minor metabolic dihydriols formed from 7,12-dimethylbenz[a] anthracene were the trans-3,4-dihydrodiol and the trans-10,11-dihydriol but the trans-1,2-dihydrodiol was not detected in the present study.  相似文献   

17.
Previous studies by other investigators have established that L-region methyl derivatives of dibenz[a,h]anthracene (DBA) were more carcinogenic than the parent hydrocarbon. The bioalkylation of DBA was investigated by incubating the hydrocarbon with rat liver cytosol fortified with S-adenosyl-L-methionine (SAM) in 0.1 M phosphate buffer (pH 7.4) for 1 h at 37 degrees C in air. The reaction was stopped by the addition of cold acetone and the mixture extracted with ethyl acetate and washed with water. The organic phase was evaporated and the residue dissolved in methylene chloride for analysis by reverse phase high performance liquid chromatography (HPLC) and gas chromatography/mass spectroscopy GC/MS. Products were found that were indistinguishable from 7-methyl-DBA and 7,14-dimethyl-DBA, 7-hydroxymethyl-DBA, 7-hydroxymethyl-14-methyl-DBA, and 7,14-dihydroxymethyl-DBA. The results suggest that unsubstituted carcinogenic hydrocarbons are preprocarcinogens that react with SAM in liver cytosol preparations, to form alkyl substituted procarcinogens, which are more potent than the corresponding preprocarcinogens.  相似文献   

18.
4 isomeric cyclopenta-derivatives of benz[e]anthracene (benz[a]aceanthrylene, benz[j]aceanthrylene, benz[l]aceanthrylene, and benz[k]acephenanthrylene) were examined for their ability to morphologically transform C3H10T1/2CL8 mouse-embryo fibroblasts. All of these polycyclic aromatic hydrocarbons studied except benz[k]acephenanthrylene transformed C3H10T1/2CL8 cells to both type II and type III foci in a concentration-dependent fashion. Benz[j]aceanthrylene was the most active, equivalent in activity to benzo[a]pyrene on a molar basis, in producing dishes of cells with transformed foci (94% at 1.0 microgram/ml). Benz[e]aceanthrylene, and benz[l]aceanthrylene produced 58% and 85% of the dishes with foci respectively at 10 micrograms/ml. Metabolism studies with [3H]benz[j]aceanthrylene in C3H10T1/2CL8 cells in which unconjugated, glucuronic acid conjugated, and sulfate conjugated metabolites were measured indicated that the dihydrodiol precursor to the bay-region diol-epoxide, 9,10-dihydroxy-9,10-dihydrobenz[j]aceanthrylene, was the major dihydrodiol formed (55%). Smaller quantities of the cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[j]aceanthrylene (14%), and the k-region dihydrodiol, 11,12-dihydroxy-11,12-dihydrobenz[j]aceanthrylene (5%) were also formed. Similar studies with [14C]benz[l]aceanthrylene indicated that the k-region dihydrodiol, 7,8-dihydroxy-7,8-dihydrobenz[l]aceanthrylene was the major metabolite formed (45%). The cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[l]aceanthrylene and 4,5-dihydroxy-4,5-dihydrobenz[l]aceanthrylene were formed in minor amounts (less than 6%). Therefore, metabolism at the cyclopenta-ring of B(j)A and B(l)A is a minor pathway in C3H10T1/2CL8 cells in contrast to previously reported studies with cyclopenta[cd]pyrene in which the cyclopenta-ring dihydrodiol was the major metabolite. These results suggest that routes of metabolic activation other than oxidation at the cyclopenta-ring such as bay region or k-region activation may play an important role with these unique polycyclic aromatic hydrocarbons in C3H10T1/2CL8 cells.  相似文献   

19.
The cytochrome P450 isoforms responsible for the regio-selective metabolism of benz[a]anthracene (BA) are poorly defined but as with other polycyclic aromatic hydrocarbons (PAHs) may include members of the CYP2C sub-family. Since the expression of some of these is regulated in a gender-specific manner and may be altered by age, rat strain or by phenobarbital treatment, the effects of these variables on metabolism of BA to diols was investigated. These studies used hepatic, microsomal membranes from immature and adult Long-Evans rats and adult Hooded Lister rats. BA-diols were resolved by normal phase HPLC into three discrete peaks identified as benz[a]anthracene-5,6-diol (BA-5,6-diol), benz[a]anthracene-10, 11-diol (BA-10,11-diol) and a mixture of benz[a]anthracene-3,4- and -8,9-diols (BA-3,4-diol and BA-8,9-diol and termed Peak(3/8)). Significant gender-related differences were found in the rates of diol formation in adults of both the Long-Evans and Hooded Lister rat strains. Formation of BA-10,11-diol and to a lesser extent the components of Peak(3/8) were greater in the male compared to female animals by factors of at least 14 and two, respectively. An age-dependent effect is also observed in the Long-Evans rat since these differences are still apparent in prepubertal animals but to a lesser extent (gender ratio male:female BA-10,11-diol 9X; Peak(3/8) 1.4X). In contrast BA-5,6-diol was formed at similar rates by membranes from female and male rats whether mature (Long-Evans and Hooded Lister) or immature (Long-Evans). Phenobarbital treatment of the adult Long-Evans rats resulted in a moderate increase in the formation of each diol other than at the 10,11-position and the induction was not gender specific. The rate of formation of BA-10, 11-diol was decreased in phenobarbital-treated male rats suggesting modulation of a male specific isoform. Measurement of microsomal epoxide hydrolase revealed no gender or age differences and suggests that this enzyme is not rate limiting in BA-diol formation and thus is not responsible for the differences in BA-diol formation observed. The results suggest that CYP2C11 along with a male-specific isoenzyme not regulated by age are important in the formation of BA-10,11-diol and a component(s) of Peak(3/8) in males. CYPs 2B2 and/or 2C6 appear to be involved in formation of BA-5,6-diol in male and female. Identification of the CYPs involved in the regio-selective metabolism of BA may lead to an explanation of the lower carcinogenic potency of this PAH compared to dimethylbenz[a]anthracene and this study provides novel clues concerning the identities of the CYPs, which are important.  相似文献   

20.
By means of glass-capillary-gas chromatography all possible benz[a]anthracene metabolites formed by rat liver microsomes (phenols, dihydrodiols, dihydrodiol enols and tetrahydrotetrols) can be separated. Mass spectra of their trimethylsilyl ethers show intense molecule ions and, in most cases, characteristic fragments. K-Region diols and their secondary oxidation products can be recognized by the ratio (m/e 147) (m/e 191) greater than 1, whereas the ratio is inverse in all other dihydrodiol trimethylsilyl ethers investigated. With the exception of 1,2-dihydrobenz[a]anthracene-1,2,3-triol all vicinal dihydrodiol enols investigated exhibit an intense elimination of the fragment CH = CH-OSiMe3 according to m/e 379. The conformation of vicinal tetrahydrobenz[a]anthracenetetrols possibly can be distinguished by the intensity of m/e 380 (M - 240) since only in those possessing two or more subsequent Me3SiO groups in the same conformation intense elimination of Me3Si-O-CH = CH-O-SiMe3 is observed. Retention times and mass spectrometric data of a series of synthetic benz[a]anthracene derivatives are presented as a base for the identification of benz[a]anthracene metabolites in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号