首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (~2-6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ~300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ~130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine.  相似文献   

2.
A neural network model for explaining experimentally observed neuronal responses in cat primary visual cortex is proposed. In our model, the basic functional unit is an orientation column which is represented by a large homogeneous population of neurons modeled as integrate-and-fire type excitable elements. The orientation column exhibits spontaneous collective oscillations in activity in response to suitable visual stimuli. Such oscillations are caused by mutual synchronization among the neurons within the column. Numerical simulation for various stimulus patterns shows that as a result of activity correlations between different columns, the amplitude and the phase of the oscillation in each column depend strongly on the global feature of the stimulus pattern. These results satisfactorily account for experimental observations.  相似文献   

3.
Spatiotemporal pattern formation in neuronal networks depends on the interplay between cellular and network synchronization properties. The neuronal phase response curve (PRC) is an experimentally obtainable measure that characterizes the cellular response to small perturbations, and can serve as an indicator of cellular propensity for synchronization. Two broad classes of PRCs have been identified for neurons: Type I, in which small excitatory perturbations induce only advances in firing, and Type II, in which small excitatory perturbations can induce both advances and delays in firing. Interestingly, neuronal PRCs are usually attenuated with increased spiking frequency, and Type II PRCs typically exhibit a greater attenuation of the phase delay region than of the phase advance region. We found that this phenomenon arises from an interplay between the time constants of active ionic currents and the interspike interval. As a result, excitatory networks consisting of neurons with Type I PRCs responded very differently to frequency modulation compared to excitatory networks composed of neurons with Type II PRCs. Specifically, increased frequency induced a sharp decrease in synchrony of networks of Type II neurons, while frequency increases only minimally affected synchrony in networks of Type I neurons. These results are demonstrated in networks in which both types of neurons were modeled generically with the Morris-Lecar model, as well as in networks consisting of Hodgkin-Huxley-based model cortical pyramidal cells in which simulated effects of acetylcholine changed PRC type. These results are robust to different network structures, synaptic strengths and modes of driving neuronal activity, and they indicate that Type I and Type II excitatory networks may display two distinct modes of processing information.  相似文献   

4.
The study used a computational approach to identify combinations of synaptic input timing and strength superimposed on a variety of active dendritic conductances that could evoke similar levels of motor unit synchronization in model motor neurons. Two motor neurons with low recruitment thresholds but different passive properties were modeled using GENESIS software. The timing and strength of synaptic inputs and the density of dendritic ion channels were optimized with a genetic algorithm to produce a set of target discharge times. The target times were taken from experimental recordings made in a human subject and had the synchronization characteristics that are commonly observed in hand muscles. The main finding was that the two parameters with the highest association to output synchrony were the ratio of inward-to-outward ionic conductances (r = 0.344; P = 0.003) and the degree of correlation in inhibitory inputs (r = 0.306; P = 0.009). Variation in the amount of correlation in the excitatory input was not positively correlated with variation in output synchrony. Further, the variability in discharge rate of the model neurons was positively correlated with the density of N-type calcium channels in the dendritic compartments (r = 0.727; P < 0.001 and r = 0.533; P < 0.001 for the two cells). This result suggests that the experimentally observed correlation between discharge variability and synchronization is caused by an increase in fast inward ionic conductances in the dendrites. Given the moderate level of correlation between output synchrony and each of the model parameters, especially at moderate levels of synchrony (E < 0.09 and CIS < 1.0), the results suggest caution in ascribing mechanisms to observations of motor unit synchronization.  相似文献   

5.
We studied the detailed structure of a neuronal network model in which the spontaneous spike activity is correctly optimized to match the experimental data and discuss the reliability of the optimized spike transmission. Two stochastic properties of the spontaneous activity were calculated: the spike-count rate and synchrony size. The synchrony size, expected to be an important factor for optimization of spike transmission in the network, represents a percentage of observed coactive neurons within a time bin, whose probability approximately follows a power-law. We systematically investigated how these stochastic properties could matched to those calculated from the experimental data in terms of the log-normally distributed synaptic weights between excitatory and inhibitory neurons and synaptic background activity induced by the input current noise in the network model. To ensure reliably optimized spike transmission, the synchrony size as well as spike-count rate were simultaneously optimized. This required changeably balanced log-normal distributions of synaptic weights between excitatory and inhibitory neurons and appropriately amplified synaptic background activity. Our results suggested that the inhibitory neurons with a hub-like structure driven by intensive feedback from excitatory neurons were a key factor in the simultaneous optimization of the spike-count rate and synchrony size, regardless of different spiking types between excitatory and inhibitory neurons.  相似文献   

6.
Wang Q  Chen G  Perc M 《PloS one》2011,6(1):e15851
This paper investigates the dependence of synchronization transitions of bursting oscillations on the information transmission delay over scale-free neuronal networks with attractive and repulsive coupling. It is shown that for both types of coupling, the delay always plays a subtle role in either promoting or impairing synchronization. In particular, depending on the inherent oscillation period of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-expressed minima in the measure for spatiotemporal synchrony. For attractive coupling, the minima appear at every integer multiple of the average oscillation period, while for the repulsive coupling, they appear at every odd multiple of the half of the average oscillation period. The obtained results are robust to the variations of the dynamics of individual neurons, the system size, and the neuronal firing type. Hence, they can be used to characterize attractively or repulsively coupled scale-free neuronal networks with delays.  相似文献   

7.
Synchronization of the oscillatory discharge of cortical neurons could be a part of the mechanism that is involved in cortical information processing. On the assumption that the basic functional unit is the column composed of local excitatory and inhibitory cells and generating oscillatory neural activity, a network model that attains associative memory function is proposed. The synchronization of oscillation in the model is studied analytically using a sublattice analysis. In particular, the retrieval of a single memory pattern can be studied in the system, which can be derived from the original network model of interacting columns and is formally equivalent to a system of an isolated column. The network model simulated numerically shows a remarkable performance in which retrieval is achieved simultaneously for more than one memory pattern. The manifestations of this simultaneous retrieval in the network dynamics are successive transitions of the network state from a synchronized oscillation for a memory pattern to that for another memory pattern.  相似文献   

8.
It was often reported and suggested that the synchronization of spikes can occur without changes in the firing rate. However, few theoretical studies have tested its mechanistic validity. In the present study, we investigate whether changes in synaptic weights can induce an independent modulation of synchrony while the firing rate remains constant. We study this question at the level of both single neurons and neuronal populations using network simulations of conductance based integrate-and-fire neurons. The network consists of a single layer that includes local excitatory and inhibitory recurrent connections, as well as long-range excitatory projections targeting both classes of neurons. Each neuron in the network receives external input consisting of uncorrelated Poisson spike trains. We find that increasing this external input leads to a linear increase of activity in the network, as well␣as an increase in the peak frequency of oscillation. In␣contrast, balanced changes of the synaptic weight of␣excitatory long-range projections for both classes of postsynaptic neurons modulate the degree of synchronization without altering the firing rate. These results demonstrate that, in a simple network, synchronization and firing rate can be modulated independently, and thus, may be used as independent coding dimensions. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

9.
A computer model of neuronal processes in the motor cortex column is presented. The model is consisted of two pyramidal cell layers with two groups of inhibitory interneurons, selectively controlling pyramidal cell soma and dendrite, in each. Active Na, Ca and K conductances are included in the model of a single neuron. Horizontal excitatory connections between pyramidal cells in the upper layer are largely of NMDA-receptor type, that in the lower layer--of non-NMDA-type. All inhibitory synapses are of GABA(A)-type. The model reproduces the main phenomenon observed in the motor cortex during the execution of conditioned movements. Consequent to an early excitation the upper layer pyramidal cells generate a late NMDA-dependent reflexive response to afferent conditional stimulation, which as in a real case is diminished by GABA(A)-type synaptic inhibition and afferent stimulus strength increase. The characteristic inverse relation between the late response manifestation and the stimulus strength observed in the real cortex can be reproduced in the model only if NMDA-glutamate receptors were preferentially localized in the terminals of pyramidal cell backward collaterals, not in the terminals of the afferent fibers on pyramidal neurons. The intended component of motor cortex neuronal activity is generated in NMDA-independent manner by the pyramidal cells of lower layer. The slow time coarse of intended component as compared with short duration of AMPA epsp's is due to a consecutive relay-race--like activation of pyramidal neurons with different dendrit-to-soma ratio.  相似文献   

10.
In the guinea-pig hippocampal CA3 region, the synaptic connection from pyramidal neurons tostratum pyramidale inhibitory neurons is remarkable. Anatomically, the connection usually consists of a single release site on an interneuronal dendrite, sometimes 200 m or more from the soma. Nevertheless, the connection is physiologically powerful, in that a single presynaptic action potential can evoke, with probability 0.1 to 0.6, a postsynaptic action potential with latency 2 to 6 ms. We construct a model interneuron and show that the anatomical and physiological observations can be reconciled if the interneuron dendrites are electrically excitable. Excitable dendrites could also account for depolarization-induced amplification of the pyramidal cell-interneuron EPSP in the voltage range subthreshold for spike generation.  相似文献   

11.
Temporal precision in spike timing is important in cortical function, interactions, and plasticity. We found that, during periods of recurrent network activity (UP states), cortical pyramidal cells in vivo and in vitro receive strong barrages of both excitatory and inhibitory postsynaptic potentials, with the inhibitory potentials showing much higher power at all frequencies above approximately 10 Hz and more synchrony between nearby neurons. Fast-spiking inhibitory interneurons discharged strongly in relation to higher-frequency oscillations in the field potential in vivo and possess membrane, synaptic, and action potential properties that are advantageous for transmission of higher-frequency activity. Intracellular injection of synaptic conductances having the characteristics of the recorded EPSPs and IPSPs reveal that IPSPs are important in controlling the timing and probability of action potential generation in pyramidal cells. Our results support the hypothesis that inhibitory networks are largely responsible for the dissemination of higher-frequency activity in cortex.  相似文献   

12.
For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S(t) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S(t). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S(t) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S(t) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S(t), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor \(D_f\) (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a “cross-correlation” measure \(M_c\). With increasing A, based on \(M_c\), we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S(t).  相似文献   

13.
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.  相似文献   

14.
We investigate how synchrony can be generated or induced in networks of electrically coupled integrate-and-fire neurons subject to noisy and heterogeneous inputs. Using analytical tools, we find that in a network under constant external inputs, synchrony can appear via a Hopf bifurcation from the asynchronous state to an oscillatory state. In a homogeneous net work, in the oscillatory state all neurons fire in synchrony, while in a heterogeneous network synchrony is looser, many neurons skipping cycles of the oscillation. If the transmission of action potentials via the electrical synapses is effectively excitatory, the Hopf bifurcation is supercritical, while effectively inhibitory transmission due to pronounced hyperpolarization leads to a subcritical bifurcation. In the latter case, the network exhibits bistability between an asynchronous state and an oscillatory state where all the neurons fire in synchrony. Finally we show that for time-varying external inputs, electrical coupling enhances the synchronization in an asynchronous network via a resonance at the firing-rate frequency.
Srdjan OstojicEmail:
  相似文献   

15.
Cortico-thalamic interactions are known to play a pivotal role in many brain phenomena, including sleep, attention, memory consolidation and rhythm generation. Hence, simple mathematical models that can simulate the dialogue between the cortex and the thalamus, at a mesoscopic level, have a great cognitive value. In the present work we describe a neural mass model of a cortico-thalamic module, based on neurophysiological mechanisms. The model includes two thalamic populations (a thalamo-cortical relay cell population, TCR, and its related thalamic reticular nucleus, TRN), and a cortical column consisting of four connected populations (pyramidal neurons, excitatory interneurons, inhibitory interneurons with slow and fast kinetics). Moreover, thalamic neurons exhibit two firing modes: bursting and tonic. Finally, cortical synapses among pyramidal neurons incorporate a disfacilitation mechanism following prolonged activity. Simulations show that the model is able to mimic the different patterns of rhythmic activity in cortical and thalamic neurons (beta and alpha waves, spindles, delta waves, K-complexes, slow sleep waves) and their progressive changes from wakefulness to deep sleep, by just acting on modulatory inputs. Moreover, simulations performed by providing short sensory inputs to the TCR show that brain rhythms during sleep preserve the cortex from external perturbations, still allowing a high cortical activity necessary to drive synaptic plasticity and memory consolidation. In perspective, the present model may be used within larger cortico-thalamic networks, to gain a deeper understanding of mechanisms beneath synaptic changes during sleep, to investigate the specific role of brain rhythms, and to explore cortical synchronization achieved via thalamic influences.  相似文献   

16.
Jackson A  Gee VJ  Baker SN  Lemon RN 《Neuron》2003,38(1):115-125
Synchronous firing of motor cortex cells exhibiting postspike facilitation (PSF) or suppression (PSS) of hand muscle EMG was examined to investigate the relationship between synchrony and output connectivity. Recordings were made in macaque monkeys performing a precision grip task. Synchronization was assessed with cross-correlation histograms of the activity from 144 pairs of simultaneously recorded neurons, while spike-triggered averages of EMG defined the muscle field for each cell. Cell pairs with similar muscle fields showed greater synchronization than pairs with nonoverlapping fields. Furthermore, cells with opposing effects in the same muscles exhibited negative synchronization. We conclude that synchrony in motor cortex engages networks of neurons directly controlling the same muscle set, while inhibitory connections exist between neuronal populations with opposing output effects.  相似文献   

17.
18.
We are interested in noise-induced firings of subthreshold neurons which may be used for encoding environmental stimuli. Noise-induced population synchronization was previously studied only for the case of global coupling, unlike the case of subthreshold spiking neurons. Hence, we investigate the effect of complex network architecture on noise-induced synchronization in an inhibitory population of subthreshold bursting Hindmarsh–Rose neurons. For modeling complex synaptic connectivity, we consider the Watts–Strogatz small-world network which interpolates between regular lattice and random network via rewiring, and investigate the effect of small-world connectivity on emergence of noise-induced population synchronization. Thus, noise-induced burst synchronization (synchrony on the slow bursting time scale) and spike synchronization (synchrony on the fast spike time scale) are found to appear in a synchronized region of the JD plane (J: synaptic inhibition strength and D: noise intensity). As the rewiring probability p is decreased from 1 (random network) to 0 (regular lattice), the region of spike synchronization shrinks rapidly in the JD plane, while the region of the burst synchronization decreases slowly. We separate the slow bursting and the fast spiking time scales via frequency filtering, and characterize the noise-induced burst and spike synchronizations by employing realistic order parameters and statistical-mechanical measures introduced in our recent work. Thus, the bursting and spiking thresholds for the burst and spike synchronization transitions are determined in terms of the bursting and spiking order parameters, respectively. Furthermore, we also measure the degrees of burst and spike synchronizations in terms of the statistical-mechanical bursting and spiking measures, respectively.  相似文献   

19.
Chaos and synchrony in a model of a hypercolumn in visual cortex   总被引:2,自引:0,他引:2  
Neurons in cortical slices emit spikes or bursts of spikes regularly in response to a suprathreshold current injection. This behavior is in marked contrast to the behavior of cortical neurons in vivo, whose response to electrical or sensory input displays a strong degree of irregularity. Correlation measurements show a significant degree of synchrony in the temporal fluctuations of neuronal activities in cortex. We explore the hypothesis that these phenomena are the result of the synchronized chaos generated by the deterministic dynamics of local cortical networks. A model of a hypercolumn in the visual cortex is studied. It consists of two populations of neurons, one inhibitory and one excitatory. The dynamics of the neurons is based on a Hodgkin-Huxley type model of excitable voltage-clamped cells with several cellular and synaptic conductances. A slow potassium current is included in the dynamics of the excitatory population to reproduce the observed adaptation of the spike trains emitted by these neurons. The pattern of connectivity has a spatial structure which is correlated with the internal organization of hypercolumns in orientation columns. Numerical simulations of the model show that in an appropriate parameter range, the network settles in a synchronous chaotic state, characterized by a strong temporal variability of the neural activity which is correlated across the hypercolumn. Strong inhibitory feedback is essential for the stabilization of this state. These results show that the cooperative dynamics of large neuronal networks are capable of generating variability and synchrony similar to those observed in cortex. Auto-correlation and cross-correlation functions of neuronal spike trains are computed, and their temporal and spatial features are analyzed. In other parameter regimes, the network exhibits two additional states: synchronized oscillations and an asynchronous state. We use our model to study cortical mechanisms for orientation selectivity. It is shown that in a suitable parameter regime, when the input is not oriented, the network has a continuum of states, each representing an inhomogeneous population activity which is peaked at one of the orientation columns. As a result, when a weakly oriented input stimulates the network, it yields a sharp orientation tuning. The properties of the network in this regime, including the appearance of virtual rotations and broad stimulus-dependent cross-correlations, are investigated. The results agree with the predictions of the mean field theory which was previously derived for a simplified model of stochastic, two-state neurons. The relation between the results of the model and experiments in visual cortex are discussed.  相似文献   

20.
Pyramidal neurons are the principal neurons of the neocortex and their excitatory impact on other pyramidal neurons and interneurons is central to neocortical dynamics. A fundamental principal that has emerged which governs pyramidal neuron excitation of other neurons in the local circuitry of neocortical columns is differential anatomical and physiological properties of the synaptic innervation via the same axon depending on the type of neuron targeted. In this study we derive anatomical principles for divergent innervation of pyramidal neurons of the same type within the local microcircuit. We also review data providing circumstantial and direct evidence for differential synaptic transmission via the same axon from neocortical pyramidal neurons and derive some principles for differential synaptic innervation of pyramidal neurons of the same type, of pyramidal neurons and interneurons and of different types of interneurons. We conclude that differential anatomical and physiological differentiation is a fundamental property of glutamatergic axons of pyramidal neurons in the neocortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号