首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dystroglycanopathies are a subset of congenital muscular dystrophies wherein α-dystroglycan (α-DG) is hypoglycosylated. α-DG is an extensively O-glycosylated extracellular matrix-binding protein and a key component of the dystrophin-glycoprotein complex. Previous studies have shown α-DG to be post-translationally modified by both O-GalNAc- and O-mannose-initiated glycan structures. Mutations in defined or putative glycosyltransferase genes involved in O-mannosylation are associated with a loss of ligand-binding activity of α-DG and are causal for various forms of congenital muscular dystrophy. In this study, we sought to perform glycomic analysis on brain O-linked glycan structures released from proteins of three different knock-out mouse models associated with O-mannosylation (POMGnT1, LARGE (Myd), and DAG1(-/-)). Using mass spectrometry approaches, we were able to identify nine O-mannose-initiated and 25 O-GalNAc-initiated glycan structures in wild-type littermate control mouse brains. Through our analysis, we were able to confirm that POMGnT1 is essential for the extension of all observed O-mannose glycan structures with β1,2-linked GlcNAc. Loss of LARGE expression in the Myd mouse had no observable effect on the O-mannose-initiated glycan structures characterized here. Interestingly, we also determined that similar amounts of O-mannose-initiated glycan structures are present on brain proteins from α-DG-lacking mice (DAG1) compared with wild-type mice, indicating that there must be additional proteins that are O-mannosylated in the mammalian brain. Our findings illustrate that classical β1,2-elongation and β1,6-GlcNAc branching of O-mannose glycan structures are dependent upon the POMGnT1 enzyme and that O-mannosylation is not limited solely to α-DG in the brain.  相似文献   

2.
N- and O-linked glycan structures of cell surface and secreted glycoproteins serve a variety of functions related to cell–cell communication in systems affecting development and disease. The more sophisticated N-glycan biosynthesis pathway of metazoans diverges from that of yeast with the appearance of the medial-Golgi β-N-acetylglucosaminyltransferases (GlcNAc-Ts). Tissue-specific regulation of medial- and trans-Golgi glycosyltransferases contribute structural diversity to glycoproteins in metazoans, and this can affect their molecular properties including localization, half-life, and biological activity. Null mutations in glycosyltransferase genes positioned later in the biosynthetic pathway disrupt expression of smaller subsets of glycan structures and are progressively milder in phenotype. In this review, we examine data on targeted mutations affecting glycosylation in mice and congenital mutations in man, with a view to understanding the molecular functions of glycan structures as modulators of glycoprotein activity. Finally, pathology associated with the expression of GlcNAc-Ts in cancer and diabetes-induced cardiac hypertrophy suggest that inhibitors of these enzymes may have therapeutic value. BioEssays 21:412–421, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

3.
4.
The methylotrophic yeast Pichia pastoris is an attractive expression system for heterologous protein production due to its ability to perform posttranslational modifications, such as glycosylation, and secrete large amounts of recombinant protein. However, the structures of N- and O-linked oligosaccharide chains in yeast differ significantly from those of mammalian cells. The most common O-linked glycan structures added by P. pastoris are typically polymers of between one and four α-linked mannose residues, with a subset of glycans being capped by a β-1,2-mannose disaccharide or phosphomannose residue. Such mannosylation of recombinant proteins is considered a key factor in immunomodulation, with mannose-specific receptors binding and promoting enhanced immune responses. As a result of engineering the N-linked glycosylation pathway of P. pastoris, the recombinant proteins expressed in this system are devoid of phospho- and β-mannose on O-linked glycans, leaving only α-mannose polymers. Here we screen a library of α-mannosidases for their ability to decrease the extent of O-mannosylation on glycoproteins secreted from this expression system. In doing so, we demonstrate the utility of the α-1,2/3/6-mannosidase from Jack bean in not only reducing extended O-linked mannose chains but also in specifically hydrolyzing the Man-α-O-Ser/Thr glycosidic bond on intact glycoproteins. As such, this presents for the first time a strategy to remove O-linked glycosylation from intact glycoproteins expressed in P. pastoris. We additionally show that this strategy can be used to significantly decrease the extent of O-mannosylation on commercial products produced in other similar expression systems.  相似文献   

5.
Protein O-mannosylation has a profound effect on the development and physiology of mammalian organisms. Mutations in genes affecting O-mannosyl glycan biosynthesis result in congenital muscular dystrophies. The main pathological mechanism triggered by O-mannosylation defects is a compromised interaction of cells with the extracellular matrix due to abnormal glycosylation of α-dystroglycan. Hypoglycosylation of α-dystroglycan impairs its ligand-binding activity and results in muscle degeneration and failure of neuronal migration. Recent experiments revealed the existence of compensatory mechanisms that could ameliorate defects of O-mannosylation. However, these mechanisms remain poorly understood. O-mannosylation and dystroglycan pathway genes show remarkable evolutionary conservation in a wide range of metazoans. Mutations and downregulation of these genes in zebrafish and Drosophila result in muscle defects and degeneration, also causing neurological phenotypes, which suggests that O-mannosylation has similar functions in mammals and lower animals. Thus, future studies in genetically tractable model organisms, such as zebrafish and Drosophila, should help to reveal molecular and genetic mechanisms of mammalian O-mannosylation and its role in the regulation of dystroglycan function.  相似文献   

6.
Protein glycosylation in microsporidia, a fungi-related group comprising exclusively obligate intracellular parasitic species, is still poorly documented. Here, we have studied glycoconjugate localization and glycan structures in spores of Encephalitozoon cuniculi and Antonospora locustae, two distantly related microsporidians invading mammalian and insect hosts, respectively. The polar sac-anchoring disc complex or polar cap, an apical element of the sporal invasion apparatus, was strongly periodic acid-thiocarbohydrazide-Ag proteinate-positive. Mannose-binding lectins reacted with the polar cap and recognized several bands (from 20 to 160 kDa) on blots of E. cuniculi protein extracts. Physicochemical analyses provided the first determination of major glycostructures in microsporidia. O-linked glycans were demonstrated to be linear manno-oligosaccharides containing up to eight alpha1, 2-linked mannose residues, thus resembling those reported in some fungi such as Candida albicans. No N-linked glycans were detected. The data are in accordance with gene-based prediction of a minimal O-mannosylation pathway. Further identification of individual mannoproteins should help in the understanding of spore germination mechanism and host-microsporidia interactions.  相似文献   

7.
In Saccharomyces cerevisiae, protein O-mannosylation, which is executed by protein O-mannosyltransferases, is essential for a variety of biological processes as well as for conferring solubility to misfolded proteins. To determine if O-mannosylation plays an essential role in endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins, we used a model misfolded protein, Gas1*p. The O-mannose content of Gas1*p, which is transferred by protein O-mannosyltransferases, was higher than that of Gas1p. Both Pmt1p and Pmt2p, which do not transfer O-mannose to correctly folded Gas1p, participated in the O-mannosylation of Gas1*p. Furthermore, in a pmt1 Delta pmt2 Delta double-mutant background, degradation of Gas1*p is altered from a primarily proteasome dependent to a vacuolar protease-dependent pathway. This process is in a manner dependent on a Golgi-to-endosome sorting function of the VPS30 complex II. Collectively, our data suggest that O-mannosylation plays an important role for proteasome-dependent degradation of Gas1*p via the ERAD pathway and when O-mannosylation is insufficient, Gas1*p is degraded in the vacuole. Thus, we propose that O-mannosylation by Pmt1p and Pmt2p might be a key step in the targeting of some misfolded proteins for degradation via the proteasome-dependent ERAD pathway.  相似文献   

8.
Glycosylation is one of the most common modifications of proteins and lipids and also a major source of biological diversity in eukaryotes. It is critical for many basic cellular functions and recognition events that range from protein folding to cell signaling, immunological defense, and the development of multicellular organisms. Glycosylation takes place mainly in the endoplasmic reticulum and Golgi apparatus and involves dozens of functionally distinct glycosidases and glycosyltransferases. How the functions of these enzymes, which act sequentially and often competitively, are coordinated to faithfully synthesize a vast array of different glycan structures is currently unclear. Here, we investigate the supramolecular organization of the Golgi N- and O-glycosylation pathways in live cells using a FRET flow cytometric quantification approach. We show that the enzymes form enzymatically active homo- and/or heteromeric complexes within each pathway. However, no complexes composed of enzymes that operate in different pathways, were detected, which suggests that the pathways are physically distinct. In addition, we show that complex formation is mediated almost exclusively by the catalytic domains of the interacting enzymes. Our data also suggest that the heteromeric complexes are functionally more important than enzyme homomers. Heteromeric complex formation was found to be dependent on Golgi acidity, markedly impaired in acidification-defective cancer cells, and required for the efficient synthesis of cell surface glycans. Collectively, the results emphasize that the Golgi glycosylation pathways are functionally organized into complexes that are important for glycan synthesis.  相似文献   

9.
The fungal cell wall is a highly dynamic structure that is essential to maintain cell shape and stability. Hence in yeasts and fungi cell wall integrity is tightly controlled. The Saccharomyces cerevisiae plasma membrane protein Mid2p is a putative mechanosensor that responds to cell wall stresses and morphological changes during pheromone induction. The extracellular domain of Mid2p, which is crucial to sensing, is highly O- and N-glycosylated. We showed that O-mannosylation is determining stability of Mid2p. If and how N-glycosylation is linked to Mid2p function was unknown. Here we demonstrate that Mid2p contains a single high mannose N-linked glycan at position Asn-35. The N -glycan is located close to the N-terminus and is exposed from the plasma membrane towards the cell wall through a highly O-mannosylated domain that is predicted to adopt a rod-like conformation. In contrast to O-mannosylation, lack of the N-linked glycan affects neither, stability of Mid2p nor distribution at the plasma membrane during vegetative and sexual growth. However, non-N-glycosylated Mid2p fails to perceive cell wall challenges. Our data further demonstrate that both the extent of the N-linked glycan and its distance from the plasma membrane affect Mid2p function, suggesting the N -glycan to be directly involved in Mid2p sensing.  相似文献   

10.
11.
Pabst M  Altmann F 《Proteomics》2011,11(4):631-643
The oligosaccharides attached to proteins or lipids are among the most challenging analytical tasks due to their complexity and variety. Knowing the genes and enzymes responsible for their biosynthesis, a large but not unlimited number of different structures and isomers of such glycans can be imagined. Understanding of the biological role of structural variations requires the ability to unambiguously determine the identity and quantity of all glycan species. Here, we examine, which analytical strategies - with a certain high-throughput potential - may come near this ideal. After an expose of the relevant techniques, we try to depict how analytical raw data are translated into structural assignments using retention times, mass and fragment spectra. A method's ability to discriminate between the many conceivable isomeric structures together with the time, effort and sample amount needed for that purpose is suggested as a criterion for the comparative assessment of approaches and their evolutionary stages.  相似文献   

12.
FTH_0069 is a previously uncharacterized strongly immunoreactive protein that has been proposed to be a novel virulence factor in Francisella tularensis. Here, the glycan structure modifying two C-terminal peptides of FTH_0069 was identified utilizing high resolution, high mass accuracy mass spectrometry, combined with in-source CID tandem MS experiments. The glycan observed at m/z 1156 was determined to be a hexasaccharide, consisting of two hexoses, three N-acetylhexosamines, and an unknown monosaccharide containing a phosphate group. The monosaccharide sequence of the glycan is tentatively proposed as X-P-HexNAc-HexNAc-Hex-Hex-HexNAc, where X denotes the unknown monosaccharide. The glycan is identical to that of DsbA glycoprotein, as well as to one of the multiple glycan structures modifying the type IV pilin PilA, suggesting a common biosynthetic pathway for the protein modification. Here, we demonstrate that the glycosylation of FTH_0069, DsbA, and PilA was affected in an isogenic mutant with a disrupted wbtDEF gene cluster encoding O-antigen synthesis and in a mutant with a deleted pglA gene encoding pilin oligosaccharyltransferase PglA. Based on our findings, we propose that PglA is involved in both pilin and general F. tularensis protein glycosylation, and we further suggest an inter-relationship between the O-antigen and the glycan synthesis in the early steps in their biosynthetic pathways.  相似文献   

13.
14.
15.
Glycosylation of proteins is important for protein stability, secretion, and localization. In this study, we have investigated the glycan synthesis pathways of 12 filamentous fungi including those of medical/agricultural/industrial importance for which genomes have been recently sequenced. We have adopted a systems biology approach to combine the results from comparative genomics techniques with high confidence information on the enzymes and fungal glycan structures, reported in the literature. From this, we have developed a composite representation of the glycan synthesis pathways in filamentous fungi (both N- and O-linked). The N-glycosylation pathway in the cytoplasm and endoplasmic reticulum was found to be highly conserved evolutionarily across all the filamentous fungi considered in the study. In the final stages of N-glycan synthesis in the Golgi, filamentous fungi follow the high mannose pathway as in Saccharomyces cerevisiae, but the level of glycan mannosylation is reduced. Highly specialized N-glycan structures with galactofuranose residues, phosphodiesters, and other insufficiently trimmed structures have also been identified in the filamentous fungi. O-Linked glycosylation in filamentous fungi was seen to be highly conserved with many mannosyltransferases that are similar to those in S. cerevisiae. However, highly variable and diverse O-linked glycans also exist. We have developed a web resource for presenting the compiled data with user-friendly query options, which can be accessed at www.fungalglycans.org. This resource can assist attempts to remodel glycosylation of recombinant proteins expressed in filamentous fungal hosts.  相似文献   

16.
Larkin A  Imperiali B 《Biochemistry》2011,50(21):4411-4426
Asparagine-linked glycosylation involves the sequential assembly of an oligosaccharide onto a polyisoprenyl donor, followed by the en bloc transfer of the glycan to particular asparagine residues within acceptor proteins. These N-linked glycans play a critical role in a wide variety of biological processes, such as protein folding, cellular targeting and motility, and the immune response. In the past decade, research in the field of N-linked glycosylation has achieved major advances, including the discovery of new carbohydrate modifications, the biochemical characterization of the enzymes involved in glycan assembly, and the determination of the biological impact of these glycans on target proteins. It is now firmly established that this enzyme-catalyzed modification occurs in all three domains of life. However, despite similarities in the overall logic of N-linked glycoprotein biosynthesis among the three kingdoms, the structures of the appended glycans are markedly different and thus influence the functions of elaborated proteins in various ways. Though nearly all eukaryotes produce the same nascent tetradecasaccharide (Glc(3)Man(9)GlcNAc(2)), heterogeneity is introduced into this glycan structure after it is transferred to the protein through a complex series of glycosyl trimming and addition steps. In contrast, bacteria and archaea display diversity within their N-linked glycan structures through the use of unique monosaccharide building blocks during the assembly process. In this review, recent progress toward gaining a deeper biochemical understanding of this modification across all three kingdoms will be summarized. In addition, a brief overview of the role of N-linked glycosylation in viruses will also be presented.  相似文献   

17.

Background

A variety of N-glycans attached to protein are known to involve in many important biological functions. Endoplasmic reticulum (ER) and Golgi localized enzymes are responsible to this template-independent glycan synthesis resulting glycoforms at each asparagine residues. The regulation mechanism such glycan synthesis remains largely unknown.

Methodology/Principal Findings

In order to investigate the relationship between glycan structure and protein conformation, we analyzed a glycoprotein of Drosophila melanogaster, chaoptin (Chp), which is localized in photoreceptor cells and is bound to the cell membrane via a glycosylphosphatidylinositol anchor. Detailed analysis based on mass spectrometry revealed the presence of 13 N-glycosylation sites and the composition of the glycoform at each site. The synthetic pathway of glycans was speculated from the observed glycan structures and the composition at each N-glycosylation site, where the presence of novel routes were suggested. The distribution of glycoforms on a Chp polypeptide suggested that various processing enzymes act on the exterior of Chp in the Golgi apparatus, although virtually no enzyme can gain access to the interior of the horseshoe-shaped scaffold, hence explaining the presence of longer glycans within the interior. Furthermore, analysis of Chp from a mutant (RNAi against dolichyl-phosphate α-d-mannosyltransferase), which affects N-glycan synthesis in the ER, revealed that truncated glycan structures were processed. As a result, the distribution of glycoforms was affected for the high-mannose-type glycans only, whereas other types of glycans remained similar to those observed in the control and wild-type.

Conclusions/Significance

These results indicate that glycan processing depends largely on the backbone structure of the parent polypeptide. The information we obtained can be applied to other members of the LRR family of proteins.  相似文献   

18.
Glycosyltransferases of the C superfamily (GT-Cs) are enzymes found in all domains of life. They catalyse the stepwise synthesis of oligosaccharides or the transfer of assembled glycans from lipid-linked donor substrates to acceptor proteins. The processes mediated by GT-Cs are required for C-, N- and O-linked glycosylation, all of which are essential post-translational modifications in higher-order eukaryotes. Until recently, GT-Cs were thought to share a conserved structural module of 7 transmembrane helices; however, recently determined GT-C structures revealed novel folds. Here we analyse the growing diversity of GT-C folds and discuss the emergence of two subclasses, termed GT-CA and GT-CB. Further substrate-bound structures are needed to facilitate a molecular understanding of glycan recognition and catalysis in these two subclasses.  相似文献   

19.
20.
The Notch family of receptors plays essential roles in many phases of development, and dysregulation of Notch activity is increasingly recognized as a player in many diseases. O-Glycosylation of the Notch extracellular domain is essential for Notch activity, and tissue-specific alterations in the glycan structures are known to regulate activity. Here we review recent advances in identification and characterization of the enzymes responsible for glycosylating Notch and molecular mechanisms for how these O-glycans affect Notch activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号