首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most commonly predicted effects of global ocean warming on marine communities is a poleward shift in the distribution of species with an associated replacement of cold‐water species by warm‐water species. Such predictions are imprecise and based largely on broad correlations in uncontrolled studies that examine changes in species composition and abundance relative to seawater temperature. Before‐After‐Control‐Impact (BACI) analyses of the effects of a large thermal discharge shows that an induced 3.4 deg. C rise in seawater temperature over 10 years along 2 km of rocky coastline resulted in significant community‐wide changes in 150 species of algae and invertebrates relative to controls. Contrary to predictions from biogeographic models, there was no trend towards warm‐water species with southern geographic affinities replacing cold‐species with northern affinities. Instead, communities were greatly altered in apparently cascading responses to changes in abundance of several habitat‐forming taxa, particularly subtidal kelps (e.g. Pterygophora californica) and intertidal foliose red algae (e.g. Mazzaella flaccida). Many temperature sensitive algae decreased greatly in abundance, whereas many invertebrate grazers increased. The results indicate that the responses of temperate reef communities to ocean warming can be strongly coupled to direct effects on habitat‐forming taxa and indirect effects operating through ecological interactions. Given our understanding of temperate reef ecology and its local variability, the results also suggest that accurate predictions of the effects of global ocean warming will be difficult to make.  相似文献   

2.
Despite increasing scientific and public concerns on the potential impacts of global ocean warming on marine biodiversity, very few empirical data on community-level responses to rising water temperatures are available other than for coral reefs. This study describes changes in temperate subtidal reef communities over decadal and regional scales in a location that has undergone considerable warming in recent decades and is forecast to be a 'hotspot' for future warming.
Plant and animal communities at 136 rocky reef sites around Tasmania (south-east Australia) were censused between 1992 and 1995, and again in 2006 and 2007. Despite evidence of major ecological changes before the period of study, reef communities appeared to remain relatively stable over the past decade. Multivariate analyses and univariate metrics of biotic communities revealed few changes with time, although some species-level responses could be interpreted as symptomatic of ocean warming. These included fishes detected in Tasmania only in recent surveys and several species with warmer water affinities that appeared to extend their distributions further south. The most statistically significant changes observed in species abundances, however, were not related to their biogeographical affinities. The majority of species with changing abundance possessed lower to mid-range abundances rather than being common, raising questions for biodiversity monitoring and management. We suggest that our study encompassed a relatively stable period following more abrupt change, and that community responses to ocean warming may follow nonlinear, step-like trajectories.  相似文献   

3.
Tuckett  C. A.  de Bettignies  T.  Fromont  J.  Wernberg  T. 《Coral reefs (Online)》2017,36(3):947-956

Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorter-term extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010–2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a fourfold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.

  相似文献   

4.

Poleward range extensions of coral reef species can reshuffle temperate communities by generating competitive interactions that did not exist previously. However, novel environmental conditions and locally adapted native temperate species may slow tropical invasions by reducing the ability of invaders to access local resources (e.g. food and shelter). We test this hypothesis on wild marine fish in a climate warming hotspot using a field experiment encompassing artificial prey release. We evaluated seven behaviours associated with foraging and aggressive interactions in a common range-extending coral reef fish (Abudefduf vaigiensis) and a co-shoaling temperate fish (Microcanthus strigatus) along a latitudinal temperature gradient (730 km) in SE Australia. We found that the coral reef fish had reduced foraging performance (i.e. slower prey perception, slower prey inspection, decreased prey intake, increased distance to prey) in their novel temperate range than in their subtropical range. Furthermore, higher abundance of temperate fishes was associated with increased retreat behaviour by coral reef fish (i.e. withdrawal from foraging on released prey), independent of latitude. Where their ranges overlapped, temperate fish showed higher foraging and aggression than coral reef fish. Our findings suggest that lower foraging performance of tropical fish at their leading range edge is driven by the combined effect of environmental factors (e.g. lower seawater temperature and/or unfamiliarity with novel conditions in their extended temperate ranges) and biological factors (e.g. increased abundance and larger body sizes of local temperate fishes). Whilst a future increase in ocean warming is expected to alleviate current foraging limitations in coral reef fishes at leading range edges, under current warming native temperate fishes at their trailing edges appear able to slow the range extension of coral reef fishes into temperate ecosystems by limiting their access to resources.

  相似文献   

5.
Changes in invertebrate body size-distributions that follow loss of habitat-forming species can potentially affect a range of ecological processes, including predation and competition. In the marine environment, small crustaceans and other mobile invertebrates (‘epifauna') represent a basal component in reef food webs, with a pivotal secondary production role that is strongly influenced by their body size-distribution. Ongoing degradation of reef habitats that affect invertebrate size-distributions, particularly transformation of coral and kelp habitat to algal turf, may thus fundamentally affect secondary production. Here we explored variation in size spectra of shallow epifaunal assemblages (i.e. the slope and intercept of the linear relationship between log abundance and body size at the assemblage level) across 21 reef microhabitats distributed along an extensive eastern Australian climatic gradient from the tropical northern Great Barrier Reef to cool temperate Tasmania. When aggregated across microhabitats at the site scale, invertebrate body size spectra (0.125–8 mm range) were consistently log-linear (R2 ranging 0.87–0.98). Size spectra differed between, but not within, major groups of microhabitats, and exhibited little variability between tropical and temperate biomes. Nevertheless, size spectra showed significant tropical/temperate differences in slopes for epifauna sampled on macroalgal habitats, and in elevation for soft coral and sponge habitats. Our results reveal epifaunal size spectra to be a highly predictable macro-ecological feature. Given that variation in epifaunal size spectra among groups of microhabitats was greater than variation between tropical and temperate biomes, we postulate that ocean warming will not greatly alter epifaunal size spectra directly. However, transformation of tropical coral and temperate macroalgal habitats to algal turfs due to warming will alter reef food web dynamics through redistribution of the size of prey available to fishes.  相似文献   

6.
The present study was carried out in Palaeochori Bay, south eastern coast of Milos, where outflow of hot gas bubbles and hydrothermal water seepage was observed. The study tests hypotheses about relationships between seawater temperature and species with warm-water affinities in areas close to shallow-water vents. We predicted that if temperature plays a major role in influencing abundance of species with warm-water affinities, then there should be more thermophilous species in areas with higher seawater temperature. Time series of seawater temperature were recorded in Palaeochori Bay and Pollonia Bay where hot emission was not observed. Temperature, water pressure and conductivity were measured every 30 min from 19 June 1996 to 16 June 1997. Fourteen qualitative samples of benthic flora were collected by SCUBA diving in six rocky sites. Photosamples of benthic assemblages were collected using an UW camera equipped with a wide-angle lens (15 mm) and an electronic flash unit. A constant area of 0.7 m2 was sampled. Quantitative estimates of abundance of algal species were performed as percent cover. This paper shows that patterns of fluctuation in seawater temperature in Palaeochori were different from the control where no venting was found. In Palaeochori, algal assemblages were dominated by species with warm-water affinities that were not found elsewhere. These results are consistent with the hypothesis that temperature plays a major role in influencing abundance of species with warm-water affinities. According to our results, hydrothermal vents are potential oases that experience biological-physical coupling not yet clearly understood. They are important in affecting migration of alloctonous thermophilous species suggesting a possible role of vent areas as stepping stones for species migration.  相似文献   

7.
Habitat forming algae play an important role in the ecology of temperate reefs worldwide. Despite this, our understanding of levels of gene flow within and among populations of algae is largely limited to studies on intertidal species; we know comparatively little about important habitat-forming subtidal algae. Here, we develop eight polymorphic microsatellite markers for the characterisation of population genetic diversity and structure in the subtidal kelp, Ecklonia radiata. This large macroalga is the most abundant habitat-forming kelp on the subtidal rocky reefs of temperate Australia and New Zealand where it forms extensive forests that support an astounding diversity of associated taxa.  相似文献   

8.
The southeast coast of Australia is a global hotspot for increasing ocean temperatures due to climate change. The temperate incursion of the East Australian Current (EAC) is increasing, affording increased connectivity with the Great Barrier Reef. The survival of tropically sourced juveniles over the winter is a significant stumbling block to poleward range shifts of marine organisms in this region. Here we examine the dependence of overwintering on winter severity and prewinter recruitment for eight species of juvenile coral reef fishes which are carried into temperate SE Australia (30–37 °S) by the EAC during the austral summer. The probability of persistence was most strongly influenced by average winter temperature and there was no effect of recruitment strength. Long‐term (138 years) data indicate that winter water temperatures throughout this region are increasing at a rate above the global average and predictions indicate a further warming of >2 °C by the end of the century. Rising ocean temperatures are resulting in a higher frequency of winter temperatures above survival thresholds. Current warming trajectories predict 100% of winters will be survivable by at least five of the study species as far south as Sydney (34 °S) by 2080. The implications for range expansions of these and other species of coral reef fish are discussed.  相似文献   

9.
Marine heatwaves can lead to rapid changes in entire communities, including in the case of shallow coral reefs the potential overgrowth of algae. Here we tested experimentally the differential thermal tolerance between algae and coral species from the Red Sea through the measurement of thermal performance curves and the assessment of thermal limits. Differences across functional groups (algae vs. corals) were apparent for two key thermal performance metrics. First, two reef‐associated algae species (Halimeda tuna and Turbinaria ornata) had higher lethal thermal limits than two coral species (Pocillopora verrucosa and Stylophora pistillata) conferring those species of algae with a clear advantage during heatwaves by surpassing the thermal threshold of coral survival. Second, the coral species had generally greater deactivation energies for net and gross primary production rates compared to the algae species, indicating greater thermal sensitivity in corals once the optimum temperature is exceeded. Our field surveys in the Red Sea reefs before and after the marine heatwave of 2015 show a change in benthic cover mainly in the southern reefs, where there was a decrease in coral cover and a concomitant increase in algae abundance, mainly turf algae. Our laboratory and field observations indicate that a proliferation of algae might be expected on Red Sea coral reefs with future ocean warming.  相似文献   

10.
Detriments to post-bleaching recovery of corals   总被引:6,自引:0,他引:6  
Predicting the response of coral reefs to large-scale mortality induced by climate change will depend greatly on the factors that influence recovery after bleaching events. We experimentally transplanted hard corals from a shallow reef with highly variable seawater temperature (23–36°C) to three unfished marine parks and three fished reefs with variable coral predator abundance and benthic cover. The transplanted corals were fragmented colonies collected from a reef that was relatively undisturbed by the 1997–1998 warm-water temperature anomaly, one of the most extreme thermal events of the past century, and it was assumed that they would represent corals likely to succeed in the future temperature environment. We examined the effects of four taxa, two fragment sizes, an acclimation period, benthic cover components, predators and tourists on the survival of the coral fragments. We found the lowest survival of transplants occurred in the unfished marine parks and this could be attributed to predation and not tourist damage. The density of small coral recruits approximately 6 months after the spawning season was generally moderate (~40–60/m2), and not different on fished and unfished reefs. Coral recovery between 1998 and 2002 was variable (0–25%), low (mean of 6.5%), and not different between fished and unfished reefs. There was high variability in coral mortality among the three unfished areas despite low variation in estimates of predator biomass, with the highest predation occurring in the Malindi MNP, a site with high coralline algal cover. Stepwise multiple regression analysis with 14 variables of coral predators and substratum showed that coralline algae was positively, and turf algae negatively associated with mortality of the transplants, with all other variables being statistically insignificant. This suggests that alternate food resources and predator choices are more important than predator biomass in determining coral survival. Nonetheless, large predatory fish in areas dominated by coralline algae may considerably retard recovery of eurythermal corals. This will not necessarily retard total hard coral recovery, as other more predator-tolerant taxa can recover. Based on the results, global climate change will not necessarily favor eurythermal over stenothermal coral taxa in remote or unfished reefs, where predation is a major cause of coral mortality.  相似文献   

11.
Determining how thermal variability will affect the structure, stability, and function of ecological communities is becoming increasingly important as global warming is predicted to affect not only average temperatures but also increase the frequency of long runs of high temperatures. Latitudinal differences in the responses of ecological communities to changes in their thermal regimes have also been predicted based on adaptations over evolutionary time to different thermal environments. We conducted an experiment to determine whether variability in temperature leads to consistent changes in community structure, temporal dynamics, and ecosystem functioning in laboratory analogues of natural freshwater supralittoral rock pool communities inhabited by meiofauna and zooplankton collected from sub‐Arctic, temperate, and tropical regions. Thermal variability of +4 °C around mean temperature led to increased extinction frequency, decreases in consumer abundance, increases in temporal variability of consumer abundance, and shifts from predominately negative interactions observed under constant temperature to positive interactions in the temperate and tropical communities but not in the sub‐Arctic communities. That sub‐Arctic zooplankton communities may be more robust to thermal variability than temperate or tropical communities’ supports recent studies on macrophysiological adaptations of species along latitudinal gradients and suggests that increasing thermal variability may have the greatest effects on community structure and function in tropical and temperate regions.  相似文献   

12.
As one of the most important hypotheses on biogeographical distribution, Rapoport's rule has attracted attention around the world. However, it is unclear whether the applicability of the elevational Rapoport's Rule differs between organisms from different biogeographical regions. We used Stevens’ method, which uses species diversity and the averaged range sizes of all species within each (100 m) elevational band to explore diversity‐elevation, range‐elevation, and diversity‐range relationships. We compared support for the elevational Rapoport's rule between tropical and temperate species of seed plants in Nepal. Neither tropical nor temperate species supported the predictions of the elevational Rapoport's rule along the elevation gradient of 100–6,000 m a.s.l. for any of the studied relationships. However, along the smaller 1,000–5,000 m a.s.l. gradient (4,300 m a.s.l. for range‐elevation relationships) which is thought to be less influenced by boundary effects, we observed consistent support for the rule by tropical species, although temperate species did not show consistent support. The degree of support for the elevational Rapoport's rule may not only be influenced by hard boundary effects, but also by the biogeographical affinities of the focal taxa. With ongoing global warming and increasing variability of temperature in high‐elevation regions, tropical taxa may shift upward into higher elevations and expand their elevational ranges, causing the loss of temperate taxa diversity. Relevant studies on the elevational Rapoport's rule with regard to biogeographical affinities may be a promising avenue to further our understanding of this rule.  相似文献   

13.
In this study, fishes and habitat attributes were quantified, four times over 1 year, on three reefs within four regions encompassing a c. 6° latitudinal gradient across south-western Australia. The variability observed was partitioned at these spatio-temporal scales in relation to reef fish variables and the influence of environmental drivers quantified at local scales, i.e. at the scale of reefs (the number of small and large topographic elements, the cover of kelp, fucalean and red algae, depth and wave exposure) and at the scale of regions (mean and maximum nutrient concentrations and mean seawater temperature) with regard to the total abundance, species density, species diversity and the multivariate structure of reef fishes. Variation in reef fish species density and diversity was significant at the regional scale, whereas variation in the total abundance and assemblage structure of fishes was also significant at local scales. Spatial variation was greater than temporal variation in all cases. A systematic and gradual species turnover in assemblage structure was observed between adjacent regions across the latitudinal gradient. The cover of red algae within larger patches of brown macroalgae (a biological attribute of the reef) and the number of large topographic elements (a structural attribute of the reef) were correlated with variation observed at local scales, while seawater temperature correlated with variation at the scale of regions. In conclusion, conservation efforts on reef fishes need to incorporate processes operating at regional scales with processes that shape local reef fish communities at local scales.  相似文献   

14.
Biological feedbacks generated through patterns of disturbance are vital for sustaining ecosystem states. Recent ocean warming and thermal anomalies have caused pantropical episodes of coral bleaching, which has led to widespread coral mortality and a range of subsequent effects on coral reef communities. Although the response of many reef‐associated fishes to major disturbance events on coral reefs is negative (e.g., reduced abundance and condition), parrotfishes show strong feedbacks after disturbance to living reef structure manifesting as increases in abundance. However, the mechanisms underlying this response are poorly understood. Using biochronological reconstructions of annual otolith (ear stone) growth from two ocean basins, we tested whether parrotfish growth was enhanced following bleaching‐related coral mortality, thus providing an organismal mechanism for demographic changes in populations. Both major feeding guilds of parrotfishes (scrapers and excavators) exhibited enhanced growth of individuals after bleaching that was decoupled from expected thermal performance, a pattern that was not evident in other reef fish taxa from the same environment. These results provide evidence for a more nuanced ecological feedback system—one where disturbance plays a key role in mediating parrotfish–benthos interactions. By influencing the biology of assemblages, disturbance can thereby stimulate change in parrotfish grazing intensity and ultimately reef geomorphology over time. This feedback cycle operated historically at within‐reef scales; however, our results demonstrate that the scale, magnitude, and severity of recent thermal events are entraining the biological responses of disparate communities to respond in synchrony. This may fundamentally alter feedbacks in the relationships between parrotfishes and reef systems.  相似文献   

15.
A mesocosm experiment was conducted to quantify the effects of reduced pH and elevated temperature on an intact marine invertebrate community. Standardised faunal communities, collected from the extreme low intertidal zone using artificial substrate units, were exposed to one of eight nominal treatments (four pH levels: 8.0, 7.7, 7.3 and 6.7, crossed with two temperature levels: 12 and 16°C). After 60 days exposure communities showed significant changes in structure and lower diversity in response to reduced pH. The response to temperature was more complex. At higher pH levels (8.0 and 7.7) elevated temperature treatments contained higher species abundances and diversity than the lower temperature treatments. In contrast, at lower pH levels (7.3 and 6.7), elevated temperature treatments had lower species abundances and diversity than lower temperature treatments. The species losses responsible for these changes in community structure and diversity were not randomly distributed across the different phyla examined. Molluscs showed the greatest reduction in abundance and diversity in response to low pH and elevated temperature, whilst annelid abundance and diversity was mostly unaffected by low pH and was higher at the elevated temperature. The arthropod response was between these two extremes with moderately reduced abundance and diversity at low pH and elevated temperature. Nematode abundance increased in response to low pH and elevated temperature, probably due to the reduction of ecological constraints, such as predation and competition, caused by a decrease in macrofaunal abundance. This community‐based mesocosm study supports previous suggestions, based on observations of direct physiological impacts, that ocean acidification induced changes in marine biodiversity will be driven by differential vulnerability within and between different taxonomical groups. This study also illustrates the importance of considering indirect effects that occur within multispecies assemblages when attempting to predict the consequences of ocean acidification and global warming on marine communities.  相似文献   

16.
Crustose coralline algae (CCA) are one of the most important benthic substrate consolidators on coral reefs through their ability to deposit calcium carbonate on an organic matrix in their cell walls. Discrete polysaccharides have been recognized for their role in biomineralization, yet little is known about the carbohydrate composition of organic matrices across CCA taxa and whether they have the capacity to modulate their organic matrix constituents amidst environmental change, particularly the threats of ocean acidification (OA) and warming. We simulated elevated pCO2 and temperature (IPCC RCP 8.5) and subjected four mid-shelf Great Barrier Reef species of CCA to 2 months of experimentation. To assess the variability in surficial monosaccharide composition and biomineralization across species and treatments, we determined the monosaccharide composition of the polysaccharides present in the cell walls of surficial algal tissue and quantified calcification. Our results revealed dissimilarity among species' monosaccharide constituents, which suggests that organic matrices are composed of different polysaccharides across CCA taxa. We also observed that species differentially modulate composition in response to ocean acidification and warming. Our findings suggest that both variability in composition and ability to modulate monosaccharide abundance may play a crucial role in surficial biomineralization dynamics under the stress of OA and global warming.  相似文献   

17.
While climate change and associated increases in sea surface temperature and ocean acidification, are among the most important global stressors to coral reefs, overfishing and nutrient pollution are among the most significant local threats. Here we examined the independent and interactive effects of reduced grazing pressure and nutrient enrichment using settlement tiles on a coral-dominated reef via long-term manipulative experimentation. We found that unique assemblages developed in each treatment combination confirming that both nutrients and herbivores are important drivers of reef community structure. When herbivores were removed, fleshy algae dominated, while crustose coralline algae (CCA) and coral were more abundant when herbivores were present. The effects of fertilization varied depending on herbivore treatment; without herbivores fleshy algae increased in abundance and with herbivores, CCA increased. Coral recruits only persisted in treatments exposed to grazers. Herbivore removal resulted in rapid changes in community structure while there was a lag in response to fertilization. Lastly, re-exposure of communities to natural herbivore populations caused reversals in benthic community trajectories but the effects of fertilization remained for at least 2 months. These results suggest that increasing herbivore populations on degraded reefs may be an effective strategy for restoring ecosystem structure and function and in reversing coral–algal phase-shifts but that this strategy may be most effective in the absence of other confounding disturbances such as nutrient pollution.  相似文献   

18.
Understanding how different taxa respond to global warming is essential for predicting future changes and elaborating strategies to buffer them. Tardigrades are well known for their ability to survive environmental stressors, such as drying and freezing, by undergoing cryptobiosis and rapidly recovering their metabolic function after stressors cease. Determining the extent to which animals that undergo cryptobiosis are affected by environmental warming will help to understand the real magnitude climate change will have on these organisms. Here, we report on the responses of tardigrades within a five‐year‐long, field‐based artificial warming experiment, which consisted of 12 open‐top chambers heated to simulate the projected effects of global warming (ranging from 0 to 5.5°C above ambient temperature) in a temperate deciduous forest of North Carolina (USA). To elucidate the effects of warming on the tardigrade community inhabiting the soil litter, three community diversity indices (abundance, species richness, and Shannon diversity) and the abundance of the three most abundant species (Diphascon pingue, Adropion scoticum, and Mesobiotus sp.) were determined. Their relationships with air temperature, soil moisture, and the interaction between air temperature and soil moisture were tested using Bayesian generalized linear mixed models. Despite observed negative effects of warming on other ground invertebrates in previous studies at this site, long‐term warming did not affect the abundance, richness, or diversity of tardigrades in this experiment. These results are in line with previous experimental studies, indicating that tardigrades may not be directly affected by ongoing global warming, possibly due to their thermotolerance and cryptobiotic abilities to avoid negative effects of stressful temperatures, and the buffering effect on temperature of the soil litter substrate.  相似文献   

19.
Studies of the ecological effects of global change often focus on one or a few species at a time. Consequently, we know relatively little about the changes underway at real-world scales of biological communities, which typically have hundreds or thousands of interacting species. Here, we use COI mtDNA amplicons from monthly samples of environmental DNA to survey 221 planktonic taxa along a gradient of temperature, salinity, dissolved oxygen and carbonate chemistry in nearshore marine habitat. The result is a high-resolution picture of changes in ecological communities using a technique replicable across a wide variety of ecosystems. We estimate community-level differences associated with time, space and environmental variables, and use these results to forecast near-term community changes due to warming and ocean acidification. We find distinct communities in warmer and more acidified conditions, with overall reduced richness in diatom assemblages and increased richness in dinoflagellates. Individual taxa finding more suitable habitat in near-future waters are more taxonomically varied and include the ubiquitous coccolithophore Emiliania huxleyi and the harmful dinoflagellate Alexandrium sp. These results suggest foundational changes for nearshore food webs under near-future conditions.  相似文献   

20.
Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf‐forming seaweeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号