首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the boundary conditions between trabecular bone specimens and the test columns of the testing machine was studied together with the effect of side-constraint on the mechanical behaviour of trabecular bone during axial compression. Cylindrical specimens taken from the upper tibial epiphysis of autopsy knees were tested non-destructively by cyclic compression to 0.8% strain under different conditions. Fixation of the specimens to the test columns by a thin layer of bone cement increased the stiffness by 40% and reduced the energy dissipation to 67% of those measured under unconstrained conditions (p less than 0.001). The thin cement layer alone increased the stiffness 19% and reduced energy dissipation to 86% (n.s.). When the machine was equipped with polished steel columns coated by a film of low-viscous oil, both the stiffness and the energy dissipation were reduced to 93% of those measured under standard conditions (p less than 0.005). Trabecular bone specimens tested side-constrained by the surrounding trabecular bone (in situ) showed a 19% larger stiffness than that measured during later testing of the corresponding machined specimens (p less than 0.005) whereas the energy dissipation was not altered significantly. The same specimens showed a 22% increase of stiffness and a 68% increase of energy dissipation when they were side-constrained by a closely fitting steel cylinder (p less than 0.005).  相似文献   

2.
Stiffness behaviour of trabecular bone specimens   总被引:3,自引:0,他引:3  
Trabecular bone specimens were tested by non-destructive technique with the purpose of investigating stiffness behaviour and optimizing stiffness determination. Cylindrical specimens (n = 25) were loaded repetitively (0.1 Hz, 30 cycles) by axial compression to 50% of predicted ultimate strength and finally compressed to failure. Analyses of single compression curves showed increasing stiffness (E') until a stress level about 50% of ultimate stress followed by decreasing stiffness. Curve fit analysis of the elastic part of the compression curve showed the best fit, when a second order polynomial was used (r = 0.94, p less than 0.001). The stiffness determined non-destructively at the 25% level of ultimate strength increased significantly to the tenth loading cycle followed by a steady state. The precision of stiffness determination as an average of five consecutive measurements at steady state was E' +/- less than 5% (95% confidence limits). A reproducibility test by repetition of the test sequence after 3 h rest showed qualitatively the same stiffness behaviour. The variation of stiffness determination between the two test sequences was +/- 27% at the first loading cycle falling to +/- 12% at steady state.  相似文献   

3.
The present study defines several conditions under which stress relaxation tests can be performed and investigates the viscoelastic behaviour of trabecular bone in compression through a series of stress relaxation tests at three strain levels and in three loading directions of each cubic specimen. A visoelastic model is proposed to characterize the behaviour of trabecular bone and a spectrum of relaxation times is determined. Trabecular bone from the femoral head is non-linearly viscoelastic and displays anisotropic behaviour, which cannot be more symmetric elastically than orthotropic.  相似文献   

4.
5.
The mechanical behaviour of cancellous bone   总被引:23,自引:0,他引:23  
Cancellous bone has a cellular structure: it is made up of a connected network of rods and plates. Because of this, its mechanical behaviour is similar to that of other cellular materials such as polymeric foams. A recent study on the mechanisms of deformation in such materials has led to an understanding of how their mechanical properties depend on their relative density, cell wall properties and cell geometry. In this paper, the results of this previous study are applied to cancellous bone in an attempt to further understand its mechanical behaviour. The results of the analysis agree reasonably well with experimental data available in the literature.  相似文献   

6.
Physical and mechanical properties of calf lumbosacral trabecular bone.   总被引:5,自引:0,他引:5  
The physical and mechanical properties of calf lumbar and sacral trabecular bone were determined and compared with those of human trabecular bone. The mean tissue density (1.66 +/- 0.12 g cm-3), equivalent mineral density (169 +/- 36 mg cm-3), apparent density (453 +/- 89 mg cm-3), ash density (194 +/- 59 mg cm-3), ash content (0.6 +/- 0.05%), compressive strength (7.1 +/- 3.0 MPa) and compressive modulus (173 +/- 97 MPa) of calf trabecular bone are similar to those of young human. There were moderate, positive linear correlations between apparent density and equivalent mineral density, ash density, and compressive strength; and between compressive strength and equivalent mineral density (R2 ranging from 0.35 to 0.48, p less than 0.001). Apparent density, ash density, and equivalent mineral density did not differ significantly in different regions. In contrast to humans, the compressive strength increased from posterior, near the facet, to the anterior vertebral body. These comparisons of physical and mechanical properties, as well as anatomical comparisons by others, indicate that the calf spine is a good model of the young non-osteoporotic human spine and thus useful for the testing of spinal instrumentation.  相似文献   

7.
8.
The ability to evaluate fracture risk at an early time point is essential for improved prognostics as well as enhanced treatment in cases of bone loss such as from osteoporosis. Improving the diagnostic ability is inherent upon both high-resolution non-invasive imaging, and a thorough understanding of how the derived indices of structure and density relate to its true mechanical behavior. Using sheep femoral trabecular bone with a range of strength, the interrelationship of mechanical and microstructural parameters was analyzed using multi-directional mechanical testing and micro-computed tomography. Forty-five cubic trabecular bone samples were harvested from 23 adult female sheep, some of whom had received hind-limb vibratory stimuli over the course of 2 years with consequently enhanced mechanical properties. These samples were pooled into a low, medium, or high strength group for further analysis. The findings show that microCT indices that are structural in nature, e.g., structural model index (SMI) (r2=0.85, p<0.0001) is as good as more density oriented indices like bone volume/total volume (BV/TV) (r2=0.81, p<0.0001) in predicting the ultimate strength of a region of trabecular bone. Additionally, those indices more related to global changes in trabecular structure such as connectivity density (ConnD) or degree of anisotropy (DA) are less able to predict the mechanical properties of bone. Interrelationships of trabecular indices such as trabecular number (TbN), thickness (TbTh), and spacing (TbSp) provide clues as to how the trabecular bone will remodel to ultimately achieve differences in the apparent mechanical properties. For instance, the analysis showed that a loss of bone primarily affects the connectedness and overall number of trabeculae, while increased strength results in an increase of the overall thickness of trabeculae while not improving the connectedness. Certainly, the microCT indices studied are able to predict the bulk mechanical properties of a trabecular ROI well, leaving unaccounted only about 15-20% of its inherent variability. Diagnostically, this implies that future work on the early prediction of fracture risk should continue to explore the role of bone quality as the key factors or as an adjuvant to bone quantity (e.g., apparent density).  相似文献   

9.
In the context of osteoporosis, evaluation of bone fracture risk and improved design of epiphyseal bone implants rely on accurate knowledge of the mechanical properties of trabecular bone. A multi-axial loading chamber was designed, built and applied to explore the compressive multi-axial yield and strength properties of human trabecular bone from different anatomical locations. A thorough experimental protocol was elaborated for extraction of cylindrical bone samples, assessment of their morphology by micro-computed tomography and application of different mechanical tests: torsion, uni-axial traction, uni-axial compression and multi-axial compression. A total of 128 bone samples were processed through the protocol and subjected to one of the mechanical tests up to yield and failure. The elastic data were analyzed using a tensorial fabric–elasticity relationship, while the yield and strength data were analyzed with fabric-based, conewise generalized Hill criteria. For each loading mode and more importantly for the combined results, strong relationships were demonstrated between volume fraction, fabric and the elastic, yield and strength properties of human trabecular bone. Despite the reviewed limitations, the obtained results will help improve the simulation of the damage behavior of human bones and bone-implant systems using the finite element method.  相似文献   

10.
It has been shown previously using in vivo and ex vivo animal models, that cyclical mechanical stimulation is capable of maintaining osteocyte viability through the control of apoptotic cell death. Here we have studied the effect of mechanical stimulation on osteocyte viability in human trabecular bone maintained in a 3-D bioreactor system. Bone samples, maintained in the bioreactor system for periods of 3, 7 and 27 days, were subjected to either cyclical mechanical stimulation which engendered a maximum of 3,000 microstrain in a waveform corresponding to physiological jumping exercise for 5 minutes daily or control unloading. Unloading resulted in a decrease in osteocyte viability within 3 days that was accompanied by increased levels of cellular apoptosis. Mechanical stimulation significantly reduced apoptosis (p< or =0.032) and improved the maintenance of osteocyte viability in bone from all patient samples. The percentage Alkaline Phosphatase (ALP) labelled bone surface was significantly increased (p< or =0.05) in response to mechanical stimulation in all samples as was the Bone Formation Rate (BFR/BS) (p=0.005) as determined by calcein label incorporation in the 27-day experiment. These data indicate that in this model system, mechanical stimulation is capable of maintaining osteocyte viability in human bone.  相似文献   

11.
The Orientation of trabecular bone specimens for mechanical testing must be carefully controlled. A method for accurately preparing on-axis cylindrical specimens using high-resolution micro-CT imaging was developed. Sixteen cylindrical specimens were prepared from eight bovine tibiae. High-resolution finite element models were generated from micro-CT images of parallelepipeds and used to determine the principal material coordinate system of each parallelepiped. A cylindrical specimen was then machined with a diamond coring bit. The resulting specimens were scanned again to evaluate the orientation. The average deviation between the principal fabric orientation and the longitudinal axis of the cylindrical specimen was only 4.70 +/- 3.11 degrees.  相似文献   

12.
In 1961, Evans and King documented the mechanical properties of trabecular bone from multiple locations in the proximal human femur. Since this time, many investigators have cataloged the distribution of trabecular bone material properties from multiple locations within the human skeleton to include femur, tibia, humerus, radius, vertebral bodies, and iliac crest. The results of these studies have revealed tremendous variations in material properties and anisotropy. These variations have been attributed to functional remodeling as dictated by Wolff's Law. Both linear and power functions have been found to explain the relationship between trabecular bone density and material properties. Recent studies have re-emphasized the need to accurately quantify trabecular bone architecture proposing several algorithms capable of determining the anisotropy, connectivity and morphology of the bone. These past studies, as well as continuing work, have significantly increased the accuracy of analytical and experimental models investigating bone, and bone/implant interfaces as well as enhanced our perspective towards understanding the factors which may influence bone formation or resorption.  相似文献   

13.
A quantitative model is developed for trabecular bone by approximating the trabecular geometry with a hypothetical network of compact bone. For the region immediately beneath the articular cartilage in the distal end of the femur, finite element analyses were performed with a high speed computer, assuming a physiological static load. The results indicate that bending and buckling of trabeculae are considerable in any elastic deformation of the bone; that fatigue fracture in some fraction of suitably oriented trabeculae is inevitable in normal ambulation; and that the stiffness varies considerably with lateral position across the subchondral plate. The latter depends totally on trabecular arrangement and may play a role in joint function and degeneration. The adjustments necessary to bring the gross stiffness into agreement with experiment imply that the intertrabecular soft tissues are of no consequence to the mechanical properties and that the compact bone of which trabeculae are made is probably not as stiff as cortical bone.  相似文献   

14.
The present study examines the viscoelastic behavior of cancellous bone at low strains and the effects of damage on this viscoelastic behavior. It provides experimental evidence of interaction between stress relaxation behavior and the effect of accumulated damage. The results suggest that damage is at least orthotropic in trabecular bone specimens under uniaxial loading. Simple linear models of viscoelasticity described the time-dependent stress-strain behavior at low strains before and after specimen damage, although better fits of these models were obtained prior to damage. Modeling the observed changes in relaxation times with damage accumulation appears necessary to successfully predict the post-damage viscoelastic response.  相似文献   

15.
16.
Recently published compression tests on PMMA/bone specimens extracted after vertebral bone augmentation indicated that PMMA/bone composites were not reinforced by the trabecular bone at all. In this study, the reasons for this unexpected behavior should be investigated by using non-linear micro-FE models. Six human vertebral bodies were augmented with either standard or low-modulus PMMA cement and scanned with a HR-pQCT system before and after augmentation. Six cylindrical PMMA/bone specimens were extracted from the augmented region, scanned with a micro-CT system and tested in compression. Four different micro-FE models were generated from these images which showed different bone tissue material behavior (with/without damage), interface behavior (perfect bonding, frictionless contact) and PMMA shrinkage due to polymerization. The non-linear stress-strain curves were compared between the different micro-FE models as well as to the compression tests of the PMMA/bone specimens. Micro-FE models with contact between bone and cement were 20% more compliant compared to those with perfect bonding. PMMA shrinkage damaged the trabecular bone already before mechanical loading, which further reduced the initial stiffness by 24%. Progressing bone damage during compression dominated the non-linear part of the stress-strain curves. The micro-FE models including bone damage and PMMA shrinkage were in good agreement with the compression tests. The results were similar with both cements. In conclusion, the PMMA/bone interface properties as well as the initial bone damage due to PMMA polymerization shrinkage clearly affected the stress-strain behavior of the composite and explained why trabecular bone did not contribute to the stiffness and strength of augmented bone.  相似文献   

17.
18.
Simplified structural models of trabecular bone have been used to model various forms of trabecular variability. The structural effects of variability of direction, length and thickness of the trabeculae have been studied using 'lattice-type' finite element models. However, many of the trabeculae are not perfectly straight, and have a small degree of curvature. The objective of this study is to quantify the influence of small curvatures of the trabeculae on the effective modulus of trabecular bone, in the principal material direction. An analytical analysis of the effect of curvature on a single trabecula is performed, utilizing the concept of cellular-solid models. Closed-form expressions are derived for the effect of curvature on the flexibility in the principal material direction. For comparison, expressions are derived for the flexibility of a straight oblique element, representing angular variability. A quantitative comparison is presented, which is dependent on the thickness of the trabeculae. It was found that small curvatures have a large effect on the stiffness of the trabecular structure. This effect is largest for thin trabeculae, and decreases for thick trabeculae. The stiffness of the trabecular structure can be reduced by a factor of up to four for thin trabeculae and up to two for thick trabeculae, even for small curvatures. The flexibility of curved elements is found to be larger than the flexibility of oblique elements with similar eccentricities. Thus it seems that curvature might play a role in determining the effective modulus of trabecular bone.  相似文献   

19.
Analyses of the distributions of stress and strain within individual bone trabeculae have not yet been reported. In this study, four trabeculae were imaged and finite elements models were generated in an attempt to quantify the variability of stress/strain in real trabeculae. In three of these trabeculae, cavities were identified with depths comparable to values reported for resorption lacunae ( approximately 50 microm)-although we cannot be certain, it is most probable that they are indeed resorption lacunae. A tensile load was applied to each trabeculum to simulate physiological loading and to ensure that bending was minimized. The force carried by each trabecula was calculated from this value using the average cross sectional area of each trabecula. The analyses predict that very high stresses (>100 MPa) existed within bone trabecular tissue. Stress and strain distributions were highly heterogeneous in all cases, more so in trabeculae with the presumptive resorption lacunae where at least 30% of the tissue had a strain greater than 4000 micoepsilon in all cases. Stresses were elevated at the pit of the lacunae, and peak stress concentrations were located in the longitudinal direction ahead of the lacunae. Given these high strains, we suggest that microdamage is inevitable around resorption lacunae in trabecular bone, and may cause the bone multicellular unit to proceed to resorb a packet of bone in the trabeculum rather than just resorb whatever localized area was initially targeted.  相似文献   

20.
Due to daily loading, trabecular bone is subjected to deformations (i.e., strain), which lead to stress in the bone tissue. When stress and/or strain deviate from the normal range, the remodeling process leads to adaptation of the bone architecture and its degree of mineralization to effectively withstand the sustained altered loading. As the apparent mechanical properties of bone are assumed to depend on the degree and distribution of mineralization, the goal of the present study was examine the influences of mineral heterogeneity on the biomechanical properties of trabecular bone in the human mandibular condyle. For this purpose nine right condyles from human dentate mandibles were scanned and evaluated with a microCT system. Cubic regional volumes of interest were defined, and each was transformed into two different types of finite element (FE) models, one homogeneous and one heterogeneous. In the heterogeneous models the element tissue moduli were scaled to the local degree of mineralization, which was determined using microCT. Compression and shear tests were simulated to determine the apparent elastic moduli in both model types. The incorporation of mineralization variation decreased the apparent Young's and shear moduli by maximally 21% in comparison to the homogeneous models. The heterogeneous model apparent moduli correlated significantly with bone volume fraction and degree of mineralization. It was concluded that disregarding mineral heterogeneity may lead to considerable overestimation of apparent elastic moduli in FE models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号