首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several strains of Burkholderia vietnamiensis, isolated from the rhizosphere of rice plants, and four strains formerly known as Pseudomonas cepacia including two collection strains and two clinical isolates were compared for siderophore production and iron uptake. The B. vietnamiensis (TVV strains) as well as the B. cepacia strains (ATCC 25416 and ATCC 17759) and the clinical isolates K132 and LMG 6999 were all found to produce ornibactins under iron starvation. The two ATCC strains of B. cepacia additionally produced the previously described siderophores, pyochelin and cepabactin. Analysis of the ratio of isolated ornibactins (C4, C6 and C8) by HPLC revealed nearly identical profiles. Supplementation of the production medium with ornithine (20 mm) resulted in a 2.5-fold increase in ornibactin synthesis. Ornibactin-mediated iron uptake was independent of the length of the acyl side chain and was observed with all strains of B. vietnamiensis and B. cepacia, but was absent with strains of Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas stutzeri, known to produce pyoverdines or desferriferrioxamines as siderophores. These results suggest that ornibactin production is a common feature of all Burkholderia strains and that these strains develop an ornibactin-specific iron transport system which is distinct from the pyoverdine-specific transport in Pseudomonas strains.  相似文献   

2.
Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.  相似文献   

3.
We have developed a multiplex PCR assay for rapid identification and differentiation of cultures for Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. The assay is valuable for use in clinical and veterinary laboratories, and in a deployable laboratory during outbreaks.  相似文献   

4.
Burkholderia pseudomallei is the etiologic agent of the disease melioidosis and is a category B biological threat agent. The genomic sequence of B. pseudomallei K96243 was recently determined, but little is known about the overall genetic diversity of this species. Suppression subtractive hybridization was employed to assess the genetic variability between two distinct clinical isolates of B. pseudomallei, 1026b and K96243. Numerous mobile genetic elements, including a temperate bacteriophage designated phi1026b, were identified among the 1026b-specific suppression subtractive hybridization products. Bacteriophage phi1026b was spontaneously produced by 1026b, and it had a restricted host range, infecting only Burkholderia mallei. It possessed a noncontractile tail, an isometric head, and a linear 54,865-bp genome. The mosaic nature of the phi1026b genome was revealed by comparison with bacteriophage phiE125, a B. mallei-specific bacteriophage produced by Burkholderia thailandensis. The phi1026b genes for DNA packaging, tail morphogenesis, host lysis, integration, and DNA replication were nearly identical to the corresponding genes in phiE125. On the other hand, phi1026b genes involved in head morphogenesis were similar to head morphogenesis genes encoded by Pseudomonas putida and Pseudomonas aeruginosa bacteriophages. Consistent with this observation, immunogold electron microscopy demonstrated that polyclonal antiserum against phiE125 reacted with the tail of phi1026b but not with the head. The results presented here suggest that B. pseudomallei strains are genetically heterogeneous and that bacteriophages are major contributors to the genomic diversity of this species. The bacteriophage characterized in this study may be a useful diagnostic tool for differentiating B. pseudomallei and B. mallei, two closely related biological threat agents.  相似文献   

5.
6.
Burkholderia cepacia complex (BCC) bacteria cause pulmonary infections that can evolve into fatal overwhelming septicemia in chronic granulomatous disease or cystic fibrosis patients. Burkholderia cenocepacia and Burkholderia multivorans are responsible for the majority of BCC infections in cystic fibrosis patients, but B. cenocepacia is generally associated with a poorer prognosis than B. multivorans. The present study investigated whether these pathogens could modulate the normal functions of primary human monocyte-derived dendritic cells (DCs), important phagocytic cells that act as critical orchestrators of the immune response. Effects of the bacteria on maturation of DCs were determined using flow cytometry. DCs co-incubated for 24 h with B. cenocepacia, but not B. multivorans, had reduced expression of costimulatory molecules when compared with standard BCC lipopolysaccharide-matured DCs. B. cenocepacia, but not B. multivorans, also induced necrosis in DCs after 24 h, as determined by annexin V and propidium iodide staining. DC necrosis only occurred after phagocytosis of live B. cenocepacia; DCs exposed to heat-killed bacteria, bacterial supernatant or those pre-treated with cytochalasin D then exposed to live bacteria remained viable. The ability of B. cenocepacia to interfere with normal DC maturation and induce necrosis may contribute to its pathogenicity in susceptible hosts.  相似文献   

7.
A subtraction library of Burkholderia pseudomallei was constructed by subtractive hybridisation of B. pseudomallei genomic DNA with Burkholderia thailandensis genomic DNA. Two clones were found to have significant sequence similarity to insertion sequences which have previously not been found in B. pseudomallei (designated ISA and ISB); and two clones showed sequence similarity to different regions of Burkholderia cepacia IS407 that has recently been detected in B. pseudomallei. The former, though possibly non-functional, represents new transposable genetic elements of B. pseudomallei. All three sequences were found to be present in multi-copy in the genomes of a number of B. pseudomallei strains and in B. thailandensis, which are the first transposable elements identified in this species.  相似文献   

8.
Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown’s medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown’s agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown’s-positive colonies that are not B. pseudomallei.  相似文献   

9.
A real-time PCR assay, BurkDiff, was designed to target a unique conserved region in the B. pseudomallei and B. mallei genomes containing a SNP that differentiates the two species. Sensitivity and specificity were assessed by screening BurkDiff across 469 isolates of B. pseudomallei, 49 isolates of B. mallei, and 390 isolates of clinically relevant non-target species. Concordance of results with traditional speciation methods and no cross-reactivity to non-target species show BurkDiff is a robust, highly validated assay for the detection and differentiation of B. pseudomallei and B. mallei.  相似文献   

10.
Burkholderia cepacia is found in soils and waters, it can be used in biocontrol and bioremediation but is also a human pathogen. It is not yet clear what differentiates pathogenic from non-pathogenic strains of the organism. In this study the multiple replicon structure was investigated in 28 strains of B. cepacia by pulsed field gel electrophoresis. All strains examined, whether of clinical, environmental or plant pathogenic origin, were found to have two, three or four large (> 500 kbp) replicons. Many strains also contained small replicons. Clinical strains were more likely to have three or four large replicons than non-clinical strains. Multiple replicon structure was also demonstrated in B. gladioli and Alcaligenes eutrophus.  相似文献   

11.
Harley VS  Dance DA  Drasar BS  Tovey G 《Microbios》1998,96(384):71-93
Burkholderia pseudomallei causes melioidosis, a serious and often fatal bacterial infection. B. pseudomallei can behave as a facultatively intracellular organism and this ability may be important in the pathogenesis of both acute and chronic infection. The uptake of B. pseudomallei and other Burkholderia spp. by cells in tissue culture was examined by electron microscopy. B. pseudomallei can invade cultured cell lines including phagocytic lines such as RAW264, J774 and U937, and non-phagocytic lines such as CaCO-2, Hep2, HeLa, L929, McCoy, Vero and CHO. Uptake was followed by the intracellular multiplication of B. pseudomallei and the induction of cell fusion and multinucleate giant cell formation. Similar effects were produced by B. mallei and B. thailandensis.  相似文献   

12.
Two putative novel Burkholderia cenocepacia lineages found in the semi-arid region of north-east Brazil causing onion sour skin were studied using genomic approaches to determine their taxonomic position. Four strains belonging to one novel lineage (CCRMBC16, CCRMBC33, CCRMBC74, and CCRMBC171) and one strain (CCRMBC51) belonging to another novel lineage had their whole genome sequenced to carry out taxogenomic analyses. The phylogenomic tree built using the type (strain) genome server (TYGS) clustered the strains CCRMBC16, CCRMBC33, CCRMBC74, and CCRMBC171 into the same clade, while grouped the strain CCRMBC51 separately. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analysis showed values above 99.21 % and 93.2 %, respectively, among the strains CCRMBC16, CCRMBC33, CCRMBC74, and CCRMBC171, while ANI and dDDH values between these strains and the strain CCRMBC51 were below 94.49 % and 56.6 %, respectively. All these strains showed ANI and dDDH values below 94.78 % and 58.8 % concerning type strains of the B. cepacia complex (Bcc) species. The phylogenetic maximum likelihood tree constructed based on the multilocus sequence analysis of core genes (cMLSA) clustered the strains CCRMBC16, CCRMBC33, CCRMBC74, and CCRMBC171 and the strain CCRMBC51 in two exclusive clades, which did not cluster with any known species of the Bcc. Therefore, combined data from TYGS, ANI, dDDH, and cMLSA demonstrated that the strains represent two novel species of the Bcc, which we classified as Burkholderia semiarida sp. nov. and Burkholderia sola sp. nov., and proposed the strains CCRMBC74T (=IBSBF 3371 T = CBAS 905 T) and CCRMBC51T (=IBSBF3370T = CBAS 904 T) as type strains, respectively.  相似文献   

13.
洋葱伯克霍尔德菌(Burkholderia cepacia)在生物防治、生物降解等农业领域有着广泛的应用,它产生的脂肪酶则在有机合成、精细化工等领域潜力巨大。采用改良的TB-T平板筛选法从土壤中初步筛选出300株洋葱伯克霍尔德菌,然后用脂肪酶活性检测平板对300株菌进行筛选,最终获得6株脂肪酶产量高的菌,通过发酵发现6株菌均有较好的产脂肪酶能力。随后通过16S rDNA比对的方法将6株全部鉴定为B.cepacia。在此基础上,采用HaeⅢ-recA RFLP和基因种特异性PCR对6株菌进行了基因种鉴定,结果表明JWT16、G63YL、WJ158和JWT137属于Burkholderia cenocepacia菌,JWP9属于Burkhold-eria vietnamiensis,JWT267则属于Burkholderia multivorans。  相似文献   

14.
The dynamics of the antigen 8 synthesis in Burkholderia pseudomallei and B. mallei under conditions of their submerged was studied. Differences in the intensity of this antigen synthesis in two pathogenic Burkholderia species were established and the producer strains, most effective with respect to this sign, were selected.  相似文献   

15.
Nineteen Burkholderia cepacia-like isolates of human and environmental origin could not be assigned to one of the seven currently established genomovars using recently developed molecular diagnostic tools for B. cepacia complex bacteria. Various genotypic and phenotypic characteristics were examined. The results of this polyphasic study allowed classification of the 19 isolates as an eighth B. cepacia complex genomovar (Burkholderia anthina sp. nov.) and to design tools for its identification in the diagnostic laboratory. In addition, new and published data for Burkholderia pyrrocinia indicated that this soil bacterium is also a member of the B. cepacia complex. This highlights another potential source for diagnostic problems with B. cepacia-like bacteria.  相似文献   

16.
Abstract Eighty-one isolates of Rhizoctonia solani AG4 were obtained from soil samples with diverse geographic origins in Korea. Forty-five out of 81 isolates (56%) contained at least one dsRNA molecule with their sizes ranging from 2.3 to > 23.1 kb. Nine different sizes of dsRNA molecules were found and extensive variation in banding patterns was observed among isolates. By comparing the sizes and combinations of dsRNAs, 21 distinct banding patterns were observed. Cytoplasmic fractions from 3 isolates showed the same dsRNA band patterns as those from the total cell extracts. The dsRNAs were stable through 10 successive hyphal tip cultures and serial transfers onto the potato dextrose agar supplemented with cycloheximide or emetine. The presence or absence of dsRNAs was not apparently correlated with disease severity, phenol oxidase activity, and geographic origin.  相似文献   

17.
Burkholderia cepacia has emerged as an important pathogen in patients with cystic fibrosis. Many gram-negative pathogens regulate the production of extracellular virulence factors by a cell density-dependent mechanism termed quorum sensing, which involves production of diffusible N-acylated homoserine lactone signal molecules, called autoinducers. Transposon insertion mutants of B. cepacia K56-2 which hyperproduced siderophores on chrome azurol S agar were identified. One mutant, K56-R2, contained an insertion in a luxR homolog that was designated cepR. The flanking DNA region was used to clone the wild-type copy of cepR. Sequence analysis revealed the presence of cepI, a luxI homolog, located 727 bp upstream and divergently transcribed from cepR. A lux box-like sequence was identified upstream of cepI. CepR was 36% identical to Pseudomonas aeruginosa RhlR and 67% identical to SolR of Ralstonia solanacearum. CepI was 38% identical to RhlI and 64% identical to SolI. K56-R2 demonstrated a 67% increase in the production of the siderophore ornibactin, was protease negative on dialyzed brain heart infusion milk agar, and produced 45% less lipase activity in comparison to the parental strain. Complementation of a cepR mutation restored parental levels of ornibactin and protease but not lipase. An N-acylhomoserine lactone was purified from culture fluids and identified as N-octanoylhomoserine lactone. K56-I2, a cepI mutant, was created and shown not to produce N-octanoylhomoserine lactone. K56-I2 hyperproduced ornibactin and did not produce protease. These data suggest both a positive and negative role for cepIR in the regulation of extracellular virulence factor production by B. cepacia.  相似文献   

18.
The Burkholderia cepacia complex (Bcc) is composed of 17 closely related species. These bacteria are widely but heterogeneously distributed in the natural environment, such as soil, water and rhizosphere. Bcc strains are able to colonize various ecological niches by adopting versatile lifestyles, including saprophytism and (positive or deleterious) association with eukaryotic cells. Bcc strains have proven to be very efficient in biocontrol, plant growth promotion and bioremediation. However, they also are important opportunistic pathogens that can cause severe respiratory infections among individuals suffering from cystic fibrosis or chronic granulomatous disease. Therefore, considering that the distinction between plant beneficial and clinical strains is not obvious, biotechnological applications of Bcc strains are currently not allowed. This minireview provides an overview of the wide range of lifestyles that Bcc bacteria can adopt, leading to glimpses into their tremendous adaptation potential and highlighting remaining questions concerning potential implicated mechanisms.  相似文献   

19.
Clinical presentations of melioidosis, caused by Burkholderia pseudomallei are protean, but the mechanisms underlying development of the different forms of disease remain poorly understood. In murine melioidosis, the level of virulence of B. pseudomallei is important in disease pathogenesis and progression. In this study, we used B. pseudomallei-susceptible BALB/c mice to determine the virulence of a library of clinical and environmental B. pseudomallei isolates from Australia and Papua New Guinea. Among 42 non-arabinose-assimilating (ara(-)) isolates, LD(50) ranged from 10 to > 10(6) CFU. There were numerous correlations between virulence and disease presentation in patients; however, this was not a consistent observation. Virulence did not correlate with isolate origin (i.e. clinical vs environmental), since numerous ara(-) environmental isolates were highly virulent. The least virulent isolate was a soil isolate from Papua New Guinea, which was arabinose assimilating (ara(+)). Stability of B. pseudomallei virulence was investigated by in vivo passage of isolates through mice and repetitive in vitro subculture. Virulence increased following in vivo exposure in only one of eight isolates tested. In vitro subculture on ferric citrate-containing medium caused attenuation of virulence, and this correlated with changes in colony morphology. Pulsed-field gel electrophoresis and randomly amplified polymorphic DNA typing demonstrated that selected epidemiologically related isolates that had variable clinical outcomes and different in vivo virulence were clonal strains. No molecular changes were observed in isolates after in vivo or in vitro exposure despite changes in virulence. These results indicate that virulence of selected B. pseudomallei isolates is variable, being dependent on factors such as iron bioavailability. They also support the importance of other variables such as inoculum size and host risk factors in determining the clinical severity of melioidosis.  相似文献   

20.
Burkholderia (Pseudomonas) cepacia PR1(23) has been shown to constitutively express to toluene catabolic pathway distinguished by a unique toluene ortho-monooxygenase (Tom). This strain has also been shown to contain two extrachromosomal elements of < 70 and > 100 kb. A derivative strain cured of the largest plasmid, PR1(23) Cure, was unable to grow on phenol or toluene as the sole source of carbon and energy, which requires expression of the Tom pathway. Transfer of the larger plasmid from strain G4 (the parent strain inducible for Tom) enabled PR1(23) Cure to grow on toluene or phenol via inducible Tom pathway expression. Conjugal transfer of TOM23c from PR1(23) to an antibiotic-resistant derivative of PR1(23) Cure enabled the transconjugant to grow with either phenol or toluene as the sole source of carbon and energy through constitutive expression of the Tom pathway. A cloned 11.2-kb EcoRI restriction fragment of TOM23c resulted in the expression of both Tom and catechol 2,3-dioxygenase in Escherichia coli, as evidenced by its ability to oxidize trichloroethylene, toluene, m-cresol, o-cresol, phenol, and catechol. The largest resident plasmid of PR1 was identified as the source of these genes by DNA hybridization. These results indicate that the genes which encode Tom and catechol 2,3-dioxygenase are located on TOM, an approximately 108-kb degradative plasmid of B. cepacia G4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号