首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bogliolo L  Ledda S  Leoni G  Naitana S  Moor RM 《Cloning》2000,2(4):185-196
The maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) are the key regulators of both meiotic and mitotic cell cycles. Knowledge of the dynamics of these two kinases during the transition from meiosis to mitosis would be of great importance for cloning by nuclear transfer. In this study, experiments were designed to assay the changes of MPF and MAP kinase activity of in vitro matured ovine oocytes after chemical activation and culture in 0 mM or 2 mM 6-dimethylaminopurine (6-DMAP) for 12 h. Moreover, to determine the biological significance of the fluctuations of MPF, activated oocytes were fused with GV-staged partners. The biochemical results showed that the high MPF activity of MII oocytes fell to basal level precipitously within the first hour after activation, started to increase at 6-8 h, rising to 80 +/- 4% of MII after 12 h. MAPK activity decreased to a low level 4 h after activation, increased between 6-12 h, but remained below 30 +/- 3.6% of MII values. The incubation with 6-DMAP had no effect on the kinetics of MPF and MAP kinase activity. Fusion of MII oocytes to GV partners induced rapid breakdown of the GV, whereas no breakdown occurred when GV were fused with eggs in the first hours post activation. Interestingly, the high biochemical levels of MPF activity at 8-12 h after activation were not able to induce GVBD in fusion partners.  相似文献   

2.
Treatment of pre-activated oocytes with demecolcine (DEM) has been shown to induce the extrusion of all oocyte chromosomes within the second polar body (PB2). However, induced enucleation (IE) rates are generally low and the competence of these cytoplasts to support embryonic development following somatic cell nuclear transfer (SCNT) is impaired. Here, we explored whether short treatments with DEM or another antimitotic, nocodazole (NOC), improve IE efficiency, and determined the most appropriate timing for nuclear transfer in the cytoplasts produced. We show, for the first time, that IE can be accomplished in mouse and goat oocytes using NOC and that short treatments with DEM or NOC result in similar IE rates, which proved to be strain- and species-specific. Because enucleation induced by both antimitotic drugs is reversible, the IE protocol was combined with the mechanical aspiration of PB2s to increase permanent enucleation rates in mouse oocytes. None of the cloned mouse embryos produced from the resultant cytoplasts developed to the blastocyst stage. However, when they were reconstructed prior to the activation and antimitotic treatment, their in vitro embryonic development was similar to that of cloned embryos produced from mechanically-enucleated oocytes.  相似文献   

3.
The enucleation of oocytes to be used as host cytoplasts for embryo reconstruction by nuclear transfer is an important limiting step when cloning mammals. We propose an enucleation technique based on the removal of chromatin after oocyte activation, at the telophase stage, by aspirating the second polar body and surrounding cytoplasm. In a preliminary experiment to determine an optimal activation protocol, oocytes were matured for 26 and 30 hr and exposed for 5 min to 7% ethanol and/or for 3 hr at either 25 or 4°C. Relative to most activation treatments tested, oocytes matured for 30 hr and exposed to ethanol alone showed highest activation rates, as determined by low levels of H1 kinase activity within 90 min from exposure and high pronuclear formation (82%) after 12 hr of culture. No synergistic effect on activation rates was observed when oocytes also were exposed to reduced temperature after ethanol treatment. Microsurgical removal of the telophase-stage chromatin in a small volume of cytoplasm adjacent to the second polar body was significantly more effective in enucleating than aspiration of a larger cytoplasm volume surrounding the first polar body of metaphase-arrested oocytes (98% versus 59%; P < 0.01). Moreover, compared with a nuclear transfer protocol based on enucleation of metaphase-arrested oocytes followed by aging and cooling, more (38% versus 16%; P < 0.001) and better-quality blastocytes (126 versus 84 nuclei per blastocyst; P < 0.02) were obtained from embryos reconstructed using the telophase procedure. Higher development potential of embryos reconstructed by the telophase procedure may be attributed to (1) the selection of oocytes that activate and respond by extruding the second polar body, (2) avoiding the use of DNA dyes and ultraviolet irradiation, and (3) the limited removal of cytoplasm during enucleation. The ease with which telophase enucleation can be performed is likely to render this technique widely useful for research and practice on mammalian cloning. Mol. Reprod. Dev. 49:29–36, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The objective of the present study was to examine the activity changes in histone H1 kinase (also known as maturation-promoting factor [MPF]) and mitogen-activated protein kinase (MAPK) and their constituent proteins in in vitro-matured bovine oocytes after in vitro fertilization (IVF) or after parthenogenetic activation induced by calcium ionophore A23187 alone or by the ionophore followed by either 6-dimethylaminopurine (6-DMAP) or cycloheximide (CHX). Inactivation of both H1 kinase and MAPK occurred after both A23187+6-DMAP treatment and IVF; inactivation of H1 kinase preceded inactivation of MAPK. However, MAPK was inactivated much earlier in 6-DMAP-treated oocytes. Further analysis of constituent cell cycle proteins of these kinases by Western blot showed that A23187 alone could not induce changes in cdc2, cdc25, or ERK2 but induced reduction of cyclin B1. IVF and A23187+CHX induced similar changes: cyclin B1 was destroyed shortly after activation followed by accumulation of cyclin B1, phosphorylation of cdc2, and dephosphorylation of ERK2 at pronuclear formation 15 h after activation. No change in cdc25 was observed at this time. In contrast, A23187+6-DMAP treatment resulted in earlier phosphorylation of cdc2 and dephosphorylation of ERK2 at 4 h after treatment when the pronucleus formed. Moreover, accumulation of both cdc25 and cyclin B1 was detected at 15 h. Microinjection of ERK2 antibody into A23187-treated oocytes resulted in pronuclear formation. In conclusion, activation of bovine oocytes with 6-DMAP led to earlier inactivation of MAPK, while CHX induced inactivation of MAPK parallel to that following sperm-induced oocyte activation. Destruction of cyclin B is responsible for inactivation of MPF, while phosphorylation of cdc2 is likely responsible for maintaining its low activity. Inactivation of MAPK is closely associated with pronuclear development regardless of the activation protocol used.  相似文献   

5.
This work was undertaken in order to examine M-phase promoting factor (MPF) and mitogen-activated protein kinases (MAPK) activities during meiotic progression of cat oocytes cultured in two different media for two different incubation times and preovulatory cat oocytes that reached MII in vivo. Oocytes recovered from ovaries of ovariectomized cats were cultured either in TCM 199 or SOF for 24 h and 40 h. In vivo matured oocytes were recovered by follicular aspiration from ovaries of domestic cats ovariectomized 24 h to 26 h after hormonal treatment. Results showed that the kinetic of MPF and MAPK activity was similar during meiotic progression of cat oocytes matured in TCM 199 and SOF. After 24 h of incubation, MII oocytes had significantly (p < 0.001) higher MPF and MAPK levels than MII oocytes cultured for 40 h in both culture media. MPF and MAPK activity was significantly (p < 0.01) lower in the oocytes matured in vitro than in those matured in vivo. This study provides evidence that the two different maturation media did not determine differences in MPF and MAPK fluctuations and levels during meiotic progression of cat oocytes and that the time of maturation influenced the level of the two kinases. Moreover, it shows that MPF and MPK activity is higher in in vivo matured oocytes than in in vitro matured oocytes, suggesting a possible incomplete cytoplasmic maturation after culture.  相似文献   

6.
In starfish, oocytes are released from prophase block by a hormone, which has been identified as 1-methyladenine. The action of 1-methyladenine is indirect in inducing oocyte maturation: it acts on the oocyte surface to produce a cytoplasmic maturation-promoting factor (MPF), the direct trigger of germinal vesicle breakdown (GVBD). Less than 5 min after hormone addition, thus about 10 min before appearance of the cytoplasmic maturation-promoting factor, a factor appears in the germinal vesicle, which triggers the production of cytoplasmic MPF, GVBD, and the subsequent events of meiotic maturation when transferred in the cytoplasm of any fully grown oocyte of the starfishes Marthasterias glacialis and Asterias rubens. Before hormone action, the germinal vesicle also contains a factor capable of inducing meiosis reinitiation in recipient oocytes, but in contrast with nuclear MPF, this factor acts exclusively when transferred in the cytoplasm of a special category of oocytes (the “competent” oocytes). In contrast to other oocytes (the “incompetent” oocytes) the competent oocytes are capable of producing MPF to some extent after enucleation, upon hormonal stimulation. Transfer of either nuclear or cytoplasmic MPF initially produced in hormone-treated maturing oocytes triggers the production of both cytoplasmic and nuclear MPF in non-hormone-treated recipient oocytes of both categories.  相似文献   

7.
Intracellular localization of maturation/M-phase promoting factor (MPF) and mitogen activated protein (MAP) kinase in mature oocytes has been examined by immunocytochemical methods and the authors of these studies have reported that they are localized on spindles during M-phase. Although these reports showed the relative localization of MPF and MAPK on spindles, it has never been shown whether these kinases are present in the cytoplasm and, if they are present, how many parts of the kinases are localized on the metaphase spindle. In the present study, we made quantitative analyses of MPF and MAP kinase localized on oocyte spindles by kinase assays and immunoblotting after removal of the spindles from porcine mature oocytes. First, we certified their intracellular distribution by immunocytochemical methods and observed sharp signals of cyclin B1 on spindle poles and MAP kinase signals on the microtubule of metaphase spindles. In contrast to these results by immunostaining, the amounts of MPF and MAP kinase localized on spindles examined by immunoblotting and kinase assays were undetectable and less than 20%, respectively. These results indicate that the immunocytochemical technique is a powerful method for showing relative localization, but it is not suitable for quantitative analysis, and that the removal of metaphase spindles from mature oocytes does not have a severe negative impact on the subsequent MPF and MAP kinase activity and on the cell cycle progression in early embryo development.  相似文献   

8.
Microinjection of LiCl reversibly inhibits hormone-induced meiotic maturation of starfish oocytes. Microinjection of NaCl (even in ouabain-treated oocytes) or KCl, or external application of LiCl have no such effect. Blockade of meiotic maturation by Li+ occurs even when microinjection is performed after the hormone dependent period has ended, that is the period during which the hormone must be present in the medium in order that meiosis can take place. Li+ microinjection prevents oocytes from meiosis reinitiation following transfer of cytoplasm taken from maturing oocytes, which contain a maturation-promoting factor (MPF). Cytoplasm taken from Li+-injected and hormone-treated oocytes does not trigger meiosis reinitiation when transferred in control immature oocytes. Intracellular pH does not change following LiCl microinjection. Simultaneous microinjection of either K+, Na+, or EGTA does not prevent Li+-dependent inhibition in oocytes.  相似文献   

9.
All cells undergoing the transition from interphase to metaphase have been postulated to contain a "maturation-promoting factor" (MPF) capable of causing meiotic maturation when injected into immature oocytes. We have shown in an accompanying paper (A. Picard, M. C. Harricane, J. C. Labbe, and M. Doreé, 1988, Dev. Biol. 128, 121-128) that the basic oscillator driving the cell cycle still operates in maturing starfish oocytes and fertilized eggs in the absence of germinal vesicle (GV) material. Under such conditions of enucleation, we now show, however, that MPF activity cannot be detected after hormonal stimulation of prophase-arrested oocytes in Astropecten or after the normal time of second meiotic cleavage in Marthasterias. In contrast, cell cycles occur with the production of transferable MPF activity in embryos from which both pronuclei have been removed after fertilization. Reinjection of the entire contents of a GV after the normal time of second meiotic cleavage restores the ability of cytoplasm to induce meiotic maturation in immature recipient oocytes after transfer. Transduction of the hormonal stimulus at the level of the plasma membrane, stimulation of the phosphorylation of cytoplasmic proteins, and activation of a cycling Ca2+- and cyclic nucleotide-independent histone kinase still occur in the absence of GV material. Since previous studies have demonstrated that the presence of GV material in the recipient oocytes is absolutely required in starfish for the amplification of microinjected MPF (Kishimoto et al., 1981; Picard and Doree, 1984), we propose that some unidentified component of the GV is required, at least after the normal time of second meiotic cleavage in donor oocytes and at any time in recipient oocytes, for the successful transfer of MPF activity in starfish.  相似文献   

10.
Mitogen-activated protein kinase (MAP kinase) is a serine/threonine kinase whose enzymatic activity is thought to play a crucial role in mitogenic signal transduction and also in the progesterone-induced meiotic maturation of Xenopus oocytes. We have purified MAP kinase from Xenopus oocytes and have shown that the protein is present in metaphase ll oocytes under two different forms: an inactive 41-kD protein able to autoactivate and to autophosphorylate in vitro, and an active 42-kD kinase resolved into two tyrosine phosphorylated isoforms on 2D gels. During meiotic maturation, MAP kinase becomes tyrosine phosphorylated and activated following the activation of the M-phase promoting factor (MPF), a complex between the p34cdc2 kinase and cyclin B. In vivo, MAP kinase activity displays a different stability in metaphase l and in metaphase II: protein synthesis is required to maintain MAP kinase activity in metaphase I but not in metaphase II oocytes. Injection of either MPF or cyclin B into prophase oocytes promotes tyrosine phosphorylation of MAP kinase, indicating that its activation is a downstream event of MPF activation. In contrast, injection of okadaic acid, which induces in vivo MPF activation, promotes only a very weak tyrosine phosphorylation of MAP kinase, suggesting that effectors other than MPF are required for the MAP kinase activation. Moreover, in the absence of protein synthesis, cyclin B and MPF are unable to promote in vivo activation of MAP kinase, indicating that this activation requires the synthesis of new protein(s). © 1993 Wiley-Liss, Inc.  相似文献   

11.
Anas MK  Shojo A  Shimada M  Terada T 《Theriogenology》2000,53(9):1797-1806
The present study was conducted with the objective of examining the effect of wortmanin, a specific PI 3-kinase inhibitor, on the kinetic of GVBD, and on the activities of the maturation-promoting factor (MPF) and mitogen-activated protein (MAP) kinase during bovine oocyte maturation. The time sequence for GVBD was not different between oocytes cultured with or without wortmannin. Most of the cultured oocytes were at the filamentous bivalents stage after 4 h of culture. Six hours after the start of culture, most of the oocytes possessed germinal vesicles with condensed bivalent, and by 10 h of culture nearly all of the cultured oocytes underwent GVBD. A gradual increase in MPF activity until 12 h of culture was observed in the presence and absence of wortmannin. A sharp decrease in MPF activity in oocytes cultured without wortmannin treatment was recorded at 14 h of culture. Thereafter, MPF regained activity, reaching a maximum level at 20 to 24 h of culture. For oocytes cultured with wortmannin, no decline in the activity of MPF was observed during the interval from 12 to 24 h of culture. For these oocytes the MPF activity remained nearly stable during this transition until the end of incubation. The presence of wortmannin in the maturation medium did not alter MAP kinase activity. Taken together, these observations indicate that inhibition of PI 3-kinase does not modulate the time sequence of GVBD or the pattern of MAP kinase activity in bovine oocytes. However, PI 3-kinase might be one of the molecules that regulate the sharp reduction in the activity of MPF during the MI/MII transition.  相似文献   

12.
The kinetics of nuclear maturation, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes were examined. A further objective was to determine the duration of the meiotic stages during the maturation process. Porcine and bovine cumulus-oocyte complexes (COCs) were incubated in TCM 199 supplemented with 20% (v/v) heat inactivated fetal calf serum (FCS), 0.05microg/ml gentamycin, 0.02mg/ml insulin, 2.5microg/ml FSH and 5microg/ml LH. COCs were removed from the culture media in hourly intervals starting immediately after recovery from the follicle until 24 (bovine) or 48h (porcine) of culture. Oocytes were either fixed to evaluate the maturation status or the activity of MPF, assessed by its histone H1 kinase activity, and MAP kinase were determined by a radioactive assay simultaneously. In oocytes of both species, the MPF activity oscillated during the culture period with two maxima corresponding with the two metaphases: between 27-32 and after 46h (porcine) and between 6-9 and after 22h (bovine). There was a temporary decline in activity after 33-38 (porcine) and after 19h (bovine), which corresponded with anaphase I and telophase I. MAP kinase activity increased during the whole culture period and reached maximum levels after 47 (porcine) and after 22h (bovine). In porcine oocytes, the MAP kinase was activated before GVBD and MPF activation. In bovine oocytes, MPF and MAP kinase were activated at approximately the same time as the GVBD (8-9h of incubation). In average porcine, oocytes remain 23.4h in the germinal vesicle (GV) stage (13h in GV I, 5.7h in GV II, 3.2h in GV III and 1.5h in GV IV), 0.9h in diakinese, 9.6h in the metaphase I, 2.8h in anaphase I and 1.9h in telophase I of the first meiotic division. In bovine oocytes, the temporal distribution of the meiotic stages were 8.5h for the GV stage, 1.2h for diakinese, 8.3h for metaphase I, 1.6h for anaphase I and 1.9h for telophase I. These results indicate that the duration of the meiotic stages differs between the species and that MAP kinase is activated before MPF and GVBD in porcine oocytes.  相似文献   

13.
Non-synonymous single nucleotide polymorphisms (nsSNPs) are known to alter protein function, contributing to disease susceptibility. This report explores the nature of nsSNPs in the gene products of the highly conserved mitogen-activated protein kinase (MAPK) signaling pathways already implicated in cancer development. MAPK signaling pathways regulate cellular processes such as proliferation, differentiation, apoptosis, and survival mediated through interconnected signaling cascades. Using the dbSNP database, we have identified 25 nsSNPs in 17 out of 98 MAPK genes studied. Computational algorithms were used to predict whether the amino acid substitutions were evolutionarily tolerated, or affected putative functional units such as phosphorylation sites, protein motifs and domains. This study predicts that 36% of nsSNPs are likely to have functional consequences, based on evolutionary conservation analysis, and 36% based on phosphorylation prediction analysis. All such nsSNPs represent potentially functional and disease-causing/modifying alleles. More interestingly, the epistatic relationships discussed in this report represent potential synergistic/ antagonistic/additive effects of nsSNP combinations found within the same protein, or within members of the same protein complex and cascades. This strategy can effectively determine which nsSNPs potentially alter protein function, and can be utilized to study the genetic architecture and disease association of other biological protein complexes and networks.  相似文献   

14.
Gonadotropic stimulation of meiotic resumption in mice is dependent upon mitogen-activated protein kinase (MAPK) activation in the somatic compartment of the follicle. By contrast, spontaneous resumption of meiosis is independent of MAPK activation. In view of the suggested role of meiosis-activating sterol (MAS) in oocyte maturation we have (i) compared MAPK activation in rat preovulatory follicles stimulated by LH or by accumulation of endogenous MAS by using an inhibitor of MAS conversion, AY9944; (ii) examined whether stimulation of meiosis by MAS is dependent upon MAPK activation using denuded oocytes (DO) of Mos- null mice (hereafter Mos(-/-)) with oocytes unable to activate MAPK. Rat preovulatory follicles responded to LH or AY9944 stimulation by MAPK activation. Inhibition of MAPK phosphorylation blocked both LH- and AY9944 triggered resumption of meiosis. In mouse cumulus-enclosed oocytes (CEOs) and DOs AY9944 stimulated GVB in wild-type and Mos(-/-) mouse CEOs cultured with hypoxanthine (Hx). Addition of MAS or AY9944 to mouse DOs cultured with Hx induced resumption of meiosis only in wild-type and Mos(+/-) oocytes, but they were ineffective in Mos(-/-) oocytes. The observed sluggish activation of MAPK induced by AY9944 in rat follicle-enclosed oocytes (FEO) may cause the delay in meiotic resumption in response to MAS and AY9944 stimulation. Further, it is incompatible with the suggested role of MAS as an obligatory mediator of LH in the induction of meiotic maturation. MAPK/MOS activation, whether in the somatic compartment or in denuded oocytes, is required for MAS- like LH-, FSH-, or EGF-induced resumption of meiosis.  相似文献   

15.
16.
S Bapat  A Verkleij  J A Post 《FEBS letters》2001,499(1-2):21-26
In this study we show that phosphorylation of extracellular signal-regulated kinase (ERK1/2; also known as p44/42MAPK) following peroxynitrite (ONOO(-)) exposure occurs via a MAPK kinase (MEK)-independent but PKC-dependent pathway in rat-1 fibroblasts. ONOO(-)-mediated ERK1/2 phosphorylation was not blocked by MEK inhibitors PD98059 and U0126. Furthermore, no increase in MEK phosphorylation was detected upon ONOO(-) treatment. Staurosporine was used to investigate whether protein kinase C (PKC) is involved. This was confirmed by down-regulation of PKC by phorbol-12,13-dibutyrate, which resulted in significant reduction of ERK1/2 phosphorylation by ONOO(-), implying that activation of ERK by ONOO(-) depends on activation of PKC. Indeed, PKCalpha and epsilon were activated upon ONOO(-) exposure. When cells were treated with ONOO(-) in a calcium-free buffer, no activation of PKCalpha was detected. Concomitantly, a reduction of ERK1/2 phosphorylation was observed suggesting that calcium was required for translocation of PKCalpha and ERK phosphorylation by ONOO(-). Indeed, ONOO(-) exposure resulted in increased cytosolic calcium, which depended on the presence of extracellular calcium. Finally, data using G?6976, an inhibitor of calcium-dependent PKC activation, implied that ONOO(-)-mediated ERK1/2 phosphorylation depends on activation of a calcium-dependent PKC.  相似文献   

17.
18.
Although transport and subsequent translation of dendritic mRNA play an important role in neuronal synaptic plasticity, the underlying mechanisms for modulating dendritic mRNA transport are almost completely unknown. In this study, we identified and characterized an interaction between Staufen2 and mitogen-activated protein kinase (MAPK) with co-immunoprecipitation assays. Staufen2 utilized a docking (D) site to interact with ERK1/2; deleting the D-site decreased colocalization of Staufen2 with immunoreactive ERK1/2 in the cell body regions of cultured hippocampal neurons, and it reduced the amount of Staufen2-containing RNP complexes in the distal dendrites. In addition, the deletion completely abolished the depolarization-induced increase of Staufen2-containing RNP complexes. These results suggest that the MAPK pathway could modulate dendritic mRNA transport through its interaction with Staufen2.  相似文献   

19.
Cell death and cell survival are central components of normal development and pathologic states. Transforming growth factor beta1 (TGF-beta1) is a pleiotropic cytokine that regulates both cell growth and cell death. To better understand the molecular mechanisms that control cell death or survival, we investigated the role of TGF-beta1 in the apoptotic process by dominant-negative inhibition of both TGF-beta1 and mitogen-activated protein kinase (MAPK) signaling pathways. Murine macrophages (RAW 264.7) undergo apoptosis following serum deprivation, as determined by DNA laddering assay. However, apoptosis is prevented in serum-deprived macrophages by the presence of exogenous TGF-beta1. Using stably transfected RAW 264.7 cells with the kinase-deleted dominant-negative mutant of TbetaR-II (TbetaR-IIM) cDNA, we demonstrate that this protective effect by TGF-beta1 is completely abrogated. To determine the downstream signaling pathways, we examined TGF-beta1 effects on the MAPK pathway. We show that TGF-beta1 induces the extracellular signal-regulated kinase (ERK) activity in a time-dependent manner up to 4 h after stimulation. Furthermore, TGF-beta1 does not rescue serum deprivation-induced apoptosis in RAW 264.7 cells transfected with a dominant-negative mutant MAPK (ERK2) cDNA or in wild type RAW 264.7 cells in the presence of the MAPK kinase (MEK1) inhibitor. Taken together, our data demonstrate for the first time that TGF-beta1 is an inhibitor of apoptosis in cultured macrophages and may serve as a cell survival factor via TbetaR-II-mediated signaling and downstream intracellular MAPK signaling pathway.  相似文献   

20.
The role of p38 mitogen-activated protein kinase (MAPK) on vacuole formation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was examined. LPS definitely induced the formation of vacuoles in RAW 264.7 cells and SB202190 as a p38 specific inhibitor also induced slight vacuole formation. The simultaneous treatment with LPS and SB202190 induced many more vacuoles in RAW 264.7 cells than the treatment with LPS or SB202190 alone, and the vacuoles were extraordinarily large in size. On the other hand, an inactive inhibitor of p38 MAPK did not augment LPS-induced vacuole formation. Further, the inhibitors of other MAPKs and nuclear factor (NF)-kappaB pathways did not affect it. The extraordinarily large vacuoles in RAW 264.7 cells treated with LPS and SB202190 were possibly formed via fusion of small vacuoles. However, SB202190 did not augment vacuole formation in CpG DNA or interferon (IFN)-gamma-stimulated RAW 264.7 cells. The role of p38 MAPK in the vacuole formation in LPS-stimulated macrophages is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号