首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypic modulation, migration and proliferation of vascular smooth muscle cells (SMCs) are major events in restenosis after percutaneous transluminal angioplasty. Surface cell adhesion molecules, essential to morphogenesis and maintenance of adult tissue architecture, are likely to be involved, but little is known about cell adhesion molecules expressed on SMCs. T-cadherin is a glycosyl phosphatidylinositol-anchored member of the cadherin superfamily of adhesion molecules. Although highly expressed in vascular and cardiac tissues, its function in these tissues is unknown. We previously reported increased expression of T-cadherin in intimal SMCs in atherosclerotic lesions and proposed a role for T-cadherin in phenotype control. Here we performed immunohistochemical analysis of spatial and temporal changes in vascular T-cadherin expression following balloon catheterisation of the rat carotid artery. T-cadherin expression in SMCs markedly increases in the media early (1-4 days) after injury, and later (day 7-28) in forming neointima, especially in its preluminal area. Staining for monocyte/macrophage antigen ED-1, proliferating cell nuclear antigen and smooth muscle alpha-actin revealed that spatial and temporal changes in T-cadherin level coincided with the peak in cell migration and proliferation activity during neointima formation. In colchicine-treated cultures of rat aortic SMCs T-cadherin expression is increased in dividing M-phase cells but decreased in non-dividing cells. Together the data support an association between T-cadherin expression and SMC phenotype.  相似文献   

2.
Smooth muscle cell migration and proliferation are important events in the formation of intimal lesions associated with atherosclerosis and restenosis following balloon angioplasty. To make this possible, the smooth muscle cell has to change from a contractile to an activated repair cell with capacity to synthesize DNA and extracellular matrix components. There is now considerable evidence that the extracellular matrix has important functions in modulating the phenotypic properties of smooth muscle cells, but less is known about the role of the matrix metalloproteinases. The present study investigates the role of stromelysin in the modulation of rat aortic smooth muscle cell morphology and function following mechanical injury in vitro and in vivo. Antisense mRNA oligonucleotides were used to investigate the role of stromelysin expression in injury-induced phenotypic modulation and the subsequent migration and proliferation of vascular smooth muscle cells. Cultured rat aortic smooth muscle cells and balloon-injured rat carotid arteries were used as experimental models. Light- and electron microscopy were used to follow changes in smooth muscle cell phenotype and lesion formation and incorporation of 3H-thymidine to detect DNA synthesis. Injury-induced DNA synthesis and migration in vitro were inhibited by 72% and 36%, respectively, by adding stromelysin antisense oligonucleotides to the medium prior to injury. In primary cultures, 67% of the smooth muscle cells treated with stromelysin antisense were retained in a contractile phenotype as judged by analysis of cell fine structure, compared to 15% untreated cells and 40% in cells treated with mismatched oligonucleotides. Examination of the carotid arteries one week after balloon injury likewise demonstrated a larger fraction of contractile cells in the inner parts of the media in vessels treated with antisense oligonucleotides compared to those treated with mismatched oligonucleotides. The neointima was also distinctly thinner in antisense-treated than in mismatched-treated and control arteries at this time. These findings indicate that stromelysin mRNA antisense oligonucleotides inhibited phenotypic modulation of rat arterial smooth muscle cells and so caused a decrease in migration and proliferation and neointima formation in response to vessel wall injury.  相似文献   

3.
4.
Metalloproteinases (MMP)-2 and MMP-9 play a role in smooth muscle cell (SMC) migration from the media to the intima following arterial injury. Intravenous administration of adenovirus encoding tissue inhibitor of metalloproteinase-1 (TIMP-1) into balloon-injured rat arteries (3 x 10(11) viral particles/rat; n=7) resulted in a transient expression of TIMP-1 and a significant inhibition of neointima thickening within 16 days ( approximately 40% vs. control; P=0.012). Three days after injury, the number of intimal SMCs was decreased by approximately 98% in TIMP-1-treated rats. However, no alteration was seen in intimal SMC proliferation after 13 days of injury. Therefore, our results show that systemic gene transfer of TIMP-1 is a promising approach in early restenosis treatment.  相似文献   

5.
Regulation of vascular smooth muscle cell growth by aldose reductase   总被引:6,自引:0,他引:6  
Aldose reductase (AR) is a broad-specificity aldo-keto reductase with wide species and tissue distribution. The enzyme has been implicated in the development of pleiotropic complications of long-term diabetes. However, the euglycemic function of the enzyme remains unclear. To examine its potential role in cell growth, changes in AR mRNA and protein were measured in human aortic smooth muscle cells exposed in culture to serum or thrombin. Stimulation by these mitogens led to an increase in the abundance of AR mRNA and protein. Furthermore, inhibition of the AR by tolrestat and sorbinil diminished DNA synthesis and cell proliferation in response to serum. Immunohistochemical staining with anti-AR antibodies revealed no significant expression of AR in the smooth muscle cells of rat carotid arteries. However, 10 and 21 days after balloon injury, intense staining was associated with the proliferating cells of the neointima. Treatment of these animals with 40 mg/kg/day sorbinil diminished the ratio of neointima to the media. Together, these observations suggest that, in vascular smooth muscle cells (VSMC), AR is a growth-responsive gene product and that inhibition of AR prevents VSMC growth and decreases intimal hyperplasia and restenosis.  相似文献   

6.
Aldose reductase (AR) is a broad-specificity aldo-keto reductase with wide species and tissue distribution. The enzyme has been implicated in the development of pleiotropic complications of long-term diabetes. However, the euglycemic function of the enzyme remains unclear. To examine its potential role in cell growth, changes in AR mRNA and protein were measured in human aortic smooth muscle cells exposed in culture to serum or thrombin. Stimulation by these mitogens led to an increase in the abundance of AR mRNA and protein. Furthermore, inhibition of the AR by tolrestat and sorbinil diminished DNA synthesis and cell proliferation in response to serum. Immunohistochemical staining with anti-AR antibodies revealed no significant expression of AR in the smooth muscle cells of rat carotid arteries. However, 10 and 21 days after balloon injury, intense staining was associated with the proliferating cells of the neointima. Treatment of these animals with 40 mg/kg/day sorbinil diminished the ratio of neointima to the media. Together, these observations suggest that, in vascular smooth muscle cells (VSMC), AR is a growth-responsive gene product and that inhibition of AR prevents VSMC growth and decreases intimal hyperplasia and restenosis.  相似文献   

7.
The formation of neointimal thickenings in the rat carotid artery after balloon injury was studied by a combination of electron-microscopic and stereological methods. All smooth muscle cells in the normal media had a contractile phenotype, the cytoplasm being dominated by myofilaments. Seven days after endothelial denudation, the smooth muscle cells in the innermost part of the media had assumed a synthetic phenotype by loss of myofilaments and formation of a large endoplasmic reticulum and Golgi complex. These cells moved through fine openings in the internal elastic lamina and gave rise to a growing neointima by proliferation and secretion of extracellular matrix components. Fourteen days after the operation, the neointima had almost reached its final size, and mitoses were no longer noted. Nevertheless, the cells maintained a synthetic phenotype with prominent secretory organelles, although myofilaments had started to become more abundant again. They were surrounded by an extracellular matrix made up of collagen fibrils and coalescing patches of elastin. Thirty-five days after the operation, an endothelial cell layer had reformed and covered most of the luminal vessel surface. In parallel, the smooth muscle cells in the neointima had returned to a contractile phenotype with a cytoplasm dominated by myofilaments. These findings provide a morphological basis for further analysis of the cellular and molecular interactions involved in the formation of neointimal thickenings after endothelial injury, and for the search for agents interfering with this process.  相似文献   

8.
Differentiation and dedifferentiation, accompanied by proliferation play a pivotal role for the phenotypic development of vascular proliferative diseases (VPD), such as restenosis. Increasing evidence points to an essential role of regulated nucleoporin expression in the choice between differentiation and proliferation. However, whether components of the Ran GTPase cycle, which is of pivotal importance for both nucleocytoplasmic transport and for mitotic progression, are subject to similar regulation in VPD is currently unknown. Here, we show that differentiation of human coronary artery smooth muscle cell (CASMC) to a contractile phenotype by stepwise serum depletion leads to significant reduction of RanGAP1 protein levels. The inverse event, dedifferentiation of cells, was assessed in the rat carotid artery balloon injury model, a well-accepted model for neointima formation and restenosis. As revealed by temporospatial analysis of RanGAP1 expression, neointima formation in rat carotid arteries was associated with a significant upregulation of RanGAP1 expression at 3 and 7 days after balloon injury. Of note, neointimal cells located at the luminal surface revealed persistent RanGAP1 expression, as opposed to cells in deeper layers of the neointima where RanGAP1 expression was less or not detectable at all. To gain first evidence for a direct influence of RanGAP1 levels on differentiation, we reduced RanGAP1 in human coronary artery smooth muscle cells by siRNA. Indeed, downregulation of the essential RanGAP1 protein by 50% induced a differentiated, spindle-like smooth muscle cell phenotype, accompanied by an upregulation of the differentiation marker desmin. Reduction of RanGAP1 levels also resulted in a reduction of mitogen induced cellular migration and proliferation as well as a significant upregulation of the cyclin-dependent kinase inhibitor p27KIP1, without evidence for cellular necrosis. These findings suggest that RanGAP1 plays a critical role in smooth muscle cell differentiation, migration and proliferation in vitro and in vivo. Appropriate modulation of RanGAP1 expression may thus be a strategy to modulate VPD development such as restenosis.  相似文献   

9.
The migration and proliferation of smooth muscle cells (SMCs) may play a key role in tissue remodeling after arterial wall injury. We investigated the localization and effects of hepatocyte growth factor (HGF) in rabbit carotid arteries after balloon denudation. Immunoreactivity for HGF and the c-Met receptor was clearly observed in neointimal SMCs. The immunoreactivity was not restricted to proliferating cells but was seen even in non-dividing cells in the basal layer of the neointima 4 and 6 weeks after balloon denudation. The distribution of platelet-derived growth factor (PDGF)-positive cells paralleled that of proliferating SMCs. The SMCs in the basal layer of the neointima at 4 and 6 weeks were positive for matrix metalloproteinase (MMP)-2 and membrane type 1-MMP which can activate the proform of MMP-2. HGF significantly stimulated the migration but not proliferation of cultured SMCs. Our results suggest that HGF and PDGF act in coordination to promote the proliferation and migration of SMCs in the earlier phases of neointimal formation and that HGF as well as MMP-2 contribute to the later stages by facilitating the migration but not replication of SMCs. Accepted: 19 March 1999  相似文献   

10.
Angiotensin IV, (V-Y-I-H-P-F), binds to AT4 receptors in blood vessels to induce vasodilatation and proliferation of cultured bovine endothelial cells. This latter effect may be important not only in developing tissues but also in injured vessels undergoing remodelling. In the present study, using normal rabbit carotid arteries, we detected AT4 receptors in vascular smooth muscle cells and in the vasa vasorum of the adventitia. Very low receptor levels were observed in the endothelial cells. In keeping with the described binding specificity of AT4 receptors, unlabelled angiotensin IV competed for [125I]angiotensin IV binding in the arteries, with an IC50 of 1.4 nM, whereas angiotensin II and angiotensin III were weaker competitors. Within the first week following endothelial denudation of the carotid artery by balloon catheter, AT4 receptor binding in the media increased to approximately 150% of control tissue. AT4 receptor binding further increased in the media, large neointima and re-endothelialized cell layer to 223% at 20 weeks after injury. In view of the known trophic effects of angiotensin IV, the elevated expression of AT4 receptors, in both the neointima and media of arteries, following balloon injury to the endothelium, suggests a role for the peptide in the adaptive response and remodelling of the vascular wall following damage.  相似文献   

11.
Gicerin is a cell adhesion molecule belonging to the immunoglobulin superfamily. It is reported that the human homologous molecule, CD146, is expressed in the endothelial cells. Here, we found that the expression of gicerin was increased in the rat carotid arteries after balloon injury. Immunohistochemical analysis demonstrated that the expression of gicerin protein was increased in the medial smooth muscle cells prior to the formation of neointima one week after the injury and was also increased in the luminal edge of the neointima after two weeks. We employed A10 cells, a cell line derived from rat aortic smooth muscle cell, and examined the effect of growth factors on the expression of gicerin, such as IGF-1, PDGF-BB, and bFGF. We found that IGF-1, but not PDGF-BB and bFGF, significantly increases the expression of gicerin protein in A10 cells. These suggest gicerin might be involved in the arteriosclerotic neointima formation in the artery.  相似文献   

12.
At present the issue of a possible role of circulating stem cells and precursors in pathological vascular wall remodeling after angioplasty remains unsolved. Therefore the origin of neointimal cells was examined in the rat carotid artery after balloon angioplasty using morphological and immunocytochemical approaches. It is shown that at the early stages (1-7 days) after vessel injury acute inflammatory response arises in the arterial wall recruiting neutrophils, monocytes, macrophages as well as large amounts of low-differentiated blood-derived cells. At the late stages (10-28 days), at the area of injured intima, a new hyperplastic intima (neointima) is formed, which consists of cells carrying specific smooth muscle markers--alpha-actin and smoothelin. The study on cell proliferative behaviour in the injured vessel wall by bromodeoxyuridine showed that in the process of neointima formation blood-born rather than resident cells are involved. Probably, early smooth muscle and endothelial precursor cells penetrate into injured area with blood stream, where they proliferative and differentiate into mature cells.  相似文献   

13.
Cannabinoid receptor CB(2) activation inhibits inflammatory proliferation and migration of vascular smooth muscle cells in vitro. The potential in vivo relevance of these findings is unclear. We performed carotid balloon distension injury in hypercholesterolemic apolipoprotein E knockout (ApoE(-/-)) mice receiving daily intraperitoneal injection of the CB(2) agonist JWH133 (5 mg/kg) or vehicle, with the first injection given 30 min before injury. Alternatively, we subjected CB(2)(-/-) and wild-type (WT) mice to balloon injury. We determined CB(2) mRNA and protein expression in dilated arteries of ApoE(-/-) mice. Neointima formation was assessed histologically. We used bone marrow-derived murine CB(2)(-/-) and WT macrophages to study adhesion to plastic, fibronectin, or collagen, and migration was assayed by modified Boyden chamber. Aortic smooth muscle cells were isolated to determine in vitro proliferation rates. We found increased vascular CB(2) expression in ApoE(-/-) mice in response to balloon injury. Seven to twenty-one days after dilatation, injured vessels of JWH133-treated mice had less intimal nuclei numbers as well as intimal and medial areas, associated with less staining for proliferating cells, smooth muscle cells, and macrophages. Complete endothelial repair was observed after 14 days in both JWH133- and vehicle-treated mice. CB(2) deficiency resulted in increased intima formation compared with WT, whereas JWH133 did not affect intimal formation in CB(2)(-/-) mice. Apoptosis rates assessed by in situ terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining 1 h postballooning were significantly higher in the CB(2) knockouts. In vitro, bone marrow-derived CB(2)(-/-) macrophages showed enhanced adherence and migration compared with WT cells and elevated mRNA levels of adhesion molecules, chemokine receptors CCR1 and 5, and chemokine CCL2. Proliferation rates were significantly increased in CB(2)(-/-) smooth muscle cells compared with WT. In conclusion, pharmacological activation or genetic deletion of CB(2) receptors modulate neointima formation via protective effects in macrophages and smooth muscle cells.  相似文献   

14.
CTRP3 (C1q and tumour necrosis factor‐related protein 3)/cartducin, a novel serum protein, is a member of the CTRP superfamily. Although the CTRP3/cartducin gene is markedly up‐regulated in rat carotid arteries after balloon injury, little is known about its biological roles in arterial remodelling and neointima formation in injured blood vessels. We have investigated the mechanisms underlying CTRP3/cartducin up‐regulation and the in vitro effects of CTRP3/cartducin on vascular smooth muscle cells. CTRP3/cartducin expression in cultured p53LMAC01 vascular smooth muscle cells was induced by TGF‐β1 (transforming growth factor‐β1), but not by bFGF (basic fibroblast growth factor) or PDGF‐BB (platelet‐derived growth factor‐BB). Exogenous CTRP3/cartducin promoted the proliferation of p53LMAC01 cells in a dose‐dependent manner via ERK1/2 (extracellular signal‐regulated kinase 1/2)‐ and MAPK (p38 mitogen‐activated protein kinase)‐signalling pathways. In contrast, CTRP3/cartducin exhibited no effect on the migration of p53LMAC01 cells. Taken together, the results of the present study demonstrate a novel biological role of CTRP3/cartducin in promoting vascular smooth muscle cell proliferation in blood vessel walls after injury.  相似文献   

15.
16.
Ouyang P  Peng LS  Yang H  Peng WL  Wu WY  Xu AL 《生理学报》2003,55(2):128-134
研究观察了重组人白介素10(rhIL-l0)对晚期糖基化终产物(AGE)刺激下离体大鼠胸主动脉血管平滑肌细胞增殖及对SD大鼠血管损伤后新生内膜增殖的影响。体外培养大鼠主动脉血管平滑肌细胞,采用MTS/PES法确定血管平滑肌细胞的增殖状态;应用流式细胞术测定细胞周期;利用p44/42磷酸化抗MAPK抗体的蛋白免疫印迹法测定p44/42 MAPK磷酸化蛋白表达。利用大鼠颈动脉血管损伤模型,观察rhIL—10对新生内膜增殖的影响。结果显示:(1)AGE处理组与对照组相比,AGE对血管平滑肌细胞增殖具有明显的刺激作用(P<0.05)。rhIL-l0单独应用对血管平滑肌细胞生长没有影响(P>0.05)。在AGE刺激下,低至100ng/ml的rhIL-l0可抑制血管平滑肌细胞的生长(P<0.05)。(2)流式细胞术测定的结果显示,rhIL—10可以使AGE作用下的VSMC大部分处于Go/G1期,与对照组相比有明显差异(P<0.01)。(3)AGE对p44/p42 MAPK磷酸化蛋白表达有显著的增强作用,此作用可被rhIL—10抑制(P<0.001)。(4)大鼠颈动脉损伤后,rhIL—10治疗组的动脉血管新生内膜/中层面积比低于对照组约45%(P<0.01)。表明抗炎细胞因子rhIL—10可抑制AGE诱导的大鼠血管平滑肌细胞增殖和血管新生内膜的增殖。  相似文献   

17.
Pulvirenti  T. J.  Yin  J. L.  Chaufour  X.  McLachlan  C.  Hambly  B. D.  Bennett  M. R.  Barden  J. A. 《Brain Cell Biology》2000,29(9):623-631
The redistribution of purinergic P2X receptor subunits (P2X1 to P2X7) within the rabbit aorta wall three weeks after endothelial balloon injury/cholesterol feeding was examined. P2X1 receptor cluster density was elevated in the media following balloon injury/cholesterol feeding by about 30% and these clusters appeared on smooth muscle cells throughout the greatly expanded neointima but they did not change significantly on the endothelial cells following balloon injury. P2X4 clusters were found in high density throughout the media and in very high density in the enlarged neointima following balloon injury, particularly on the endothelial cells where the density increased about 10-fold after balloon injury. P2X5 clusters were found in high density in the media of normal aorta but with little change following balloon injury. P2X3, P2X6 and P2X7 cluster density was low in normal aorta and remained unchanged following balloon injury. All receptor subunits were found on endothelial cells. It is suggested that the release of ATP from damaged endothelial cells and from smooth muscle cells sufficient to activate P2X4 receptors may contribute to neointimal proliferation.  相似文献   

18.
19.
Won KJ  Lee P  Jung SH  Jiang X  Lee CK  Lin HY  Kang H  Lee HM  Kim J  Toyokuni S  Kim B 《Proteomics》2011,11(2):193-201
3-Morpholinosydnonimine (SIN-1) affects vascular smooth muscle cell migration and proliferation, processes essential for atherosclerosis. However, the mechanism by which SIN-1 exerts these effects has not been elucidated. We used 2-DE followed by MALDI-TOF/TOF MS to identify responses in protein expression to SIN-1 in rat aortic smooth muscle. Platelet-derived growth factor-BB increased cell migration and proliferation in rat aortic smooth muscle cells, and subsequent SIN-1 treatment inhibited it. Administration of SIN-1 in vivo attenuated neointima formation in balloon-injured rat carotid arteries. Proteomic analysis showed that glutathione peroxidase and 40S ribosomal protein S12 were differentially expressed in aortic strips exposed to SIN-1. Expression of annexin A2 was decreased by SIN-1. Platelet-derived growth factor-BB-induced cell migration was increased and inhibited in rat aortic smooth muscle cells with overexpression and knockdown of annexin A2 gene, respectively. The expression of annexin A2 was increased in vascular neointima compared with the intact control, which was inhibited by SIN-1 treatment. These results demonstrate that SIN-1 may attenuate vascular neointima formation by inhibiting annexin A2-mediated migration. Therefore, annexin A2 may be a potential target for therapeutic strategies for atherosclerosis.  相似文献   

20.
 Extracellular matrix-degrading enzymes may play a key role in vascular remodeling after arterial wall injury. We investigated the immunolocalization of matrix metalloproteinases (MMPs) in rabbit carotid arteries after balloon denudation. Positive immunostaining for MMP-1, -2, -3, and -9 appeared through the neointima 1 week after balloon denudation. The localization of immunopositive smooth muscle cells (SMCs) for MMP-1, -3, and -9, particularly for MMP-9, was almost similar to that of replicative SMCs and became confined to the luminal surface layer of the neointima at later time periods. However, MMP-2-positive SMCs appeared also in the basal layer of the neointima at 2 weeks, increased at 4 weeks, and then totally occupied the neointima at 6 weeks. The MMP-2-positive SMCs in the basal layer of the neointima at 4 and 6 weeks were negative for proliferation-associated antigens and were surrounded by extracellular matrix proteins. Our results suggest that all MMPs act in coordination to promote replication and migration of SMCs in the earlier phases of neointimal formation and that MMP-2 independently contributes to the later stages by facilitating the migration but not replication of SMCs from the media to the intima. Accepted: 25 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号