首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cucumber mosaic virus suppressor 2b (CMV2b) is a nuclear viral suppressor that interferes with local and systemic silencing and inhibits AGO1 slicer activity. CMV2b-mediated transgene hypomethylation and its localization in Cajal bodies suggests a role of CMV2b in RNA-directed DNA methylation (RdDM). However, its direct involvement in RdDM, or its binding with small RNAs (sRNAs) in vivo is not yet established. Here, we show that CMV2b binds both microRNAs (miRNAs) and small interfering RNAs (siRNAs) in vivo. sRNA sequencing data from the CMV2b immunocomplex revealed its preferential binding with 24-nt repeat-associated siRNAs. We provide evidence that CMV2b also has direct interaction with the AGO4 protein by recognizing its PAZ and PIWI domains. Subsequent analysis of AGO4 functions revealed that CMV2b reduced AGO4 slicer activity and the methylation of several loci, accompanied by the augmented accumulation of 24-nt siRNAs in Arabidopsis inflorescences. Intriguingly, CMV2b also regulated an AGO4-related epiallele independently of its catalytic potential, which further reinforces the repressive effects of CMV2b on AGO4 activity. Collectively, our results demonstrate that CMV2b can counteract AGO4-related functions. We propose that by adopting novel counter-host defense strategies against AGO1 and AGO4 proteins, CMV creates a favorable cellular niche for its proliferation.  相似文献   

3.
Recent studies have identified a conserved WG/GW‐containing motif, known as the Argonaute (AGO) hook, which is involved in the recruitment of AGOs to distinct components of the eukaryotic RNA silencing pathways. By using this motif as a model to detect new components in plant RNA silencing pathways, we identified SPT5‐like, a plant‐specific AGO4‐interacting member of the nuclear SPT5 (Suppressor of Ty insertion 5) RNA polymerase (RNAP) elongation factor family that is characterized by the presence of a carboxy‐terminal extension with more than 40 WG/GW motifs. Knockout SPT5‐like mutants show a decrease in the accumulation of several 24‐nt RNAs and hypomethylation at different loci revealing an implication in RNA‐directed DNA methylation (RdDM). Here, we propose that SPT5‐like emerged in plants as a facultative RNAP elongation factor. Its plant‐specific origin and role in RdDM might reflect functional interactions with plant‐specific RNA Pols required for RdDM.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
The chicken beta-globin 5'HS4 insulator element acts as a barrier to the encroachment of chromosomal silencing. Endogenous 5'HS4 sequences are highly enriched with histone acetylation and H3K4 methylation regardless of neighboring gene expression. We report here that 5'HS4 elements recruit these histone modifications when protecting a reporter transgene from chromosomal silencing. Deletion studies identified a single protein binding site within 5'HS4, footprint IV, that is necessary for the recruitment of histone modifications and for barrier activity. We have determined that USF proteins bind to footprint IV. USF1 is present in complexes with histone modifying enzymes in cell extracts, and these enzymes specifically interact with the endogenous 5'HS4 element. Knockdown of USF1 expression leads to a loss of histone modification recruitment and subsequent encroachment of H3K9 methylation. We propose that barrier activity requires the constitutive recruitment of H3K4 methylation and histone acetylation at multiple residues to counteract the propagation of condensed chromatin structures.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Argonaute (AGO) effectors of RNA silencing bind small RNA (sRNA) molecules and mediate mRNA cleavage, translational repression, or epigenetic DNA modification. In many organisms, these targeting mechanisms are devolved to different products of AGO multigene families. To investigate the basis of AGO functional diversification, we characterized three closely related Arabidopsis thaliana AGOs (AGO4, AGO6, and AGO9) implicated in RNA-directed DNA methylation. All three AGOs bound 5′ adenosine 24-nucleotide sRNAs, but each exhibited different preferences for sRNAs from different heterochromatin-associated loci. This difference was reduced when AGO6 and AGO9 were expressed from the AGO4 promoter, indicating that the functional diversification was partially due to differential expression of the corresponding genes. However, the AGO4-directed pattern of sRNA accumulation and DNA methylation was not fully recapitulated with AGO6 or AGO9 expressed from the AGO4 promoter. Here, we show that sRNA length and 5′ nucleotide do not account for the observed functional diversification of these AGOs. Instead, the selectivity of sRNA binding is determined by the coincident expression of the AGO and sRNA-generating loci, and epigenetic modification is influenced by interactions between the AGO protein and the different target loci. These findings highlight the importance of tissue specificity and AGO-associated proteins in influencing epigenetic modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号