首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simian virus 40 (SV40) appears to initiate cell lysis by expressing the late viral protein VP4 at the end of infection to aid in virus dissemination. To investigate the contribution of VP4 to cell lysis, VP4 was expressed in mammalian cells where it was predominantly observed along the nuclear periphery. The integrity of the nuclear envelope was compromised in these cells, resulting in the mislocalization of a soluble nuclear marker. Using assays that involved the cellular expression of VP4 or the treatment of cells with purified VP4, we found that the central hydrophobic domain and a proximal C-terminal nuclear localization signal of VP4 were required for (i) cytolysis associated with prolonged expression; (ii) nuclear envelope accumulation; and (iii) disruption of the nuclear, red blood cell, or host cell membranes. Furthermore, a conserved proline within the hydrophobic domain was required for membrane perforation, suggesting that this residue was crucial for VP4 cytolytic activity. These results indicate that VP4 forms pores in the nuclear membrane leading to lysis and virus release.  相似文献   

2.
Many nonenveloped viruses have evolved an infectious cycle that culminates in the lysis or permeabilization of the host to enable viral release. How these viruses initiate the lytic event is largely unknown. Here, we demonstrated that the simian virus 40 progeny accumulated at the nuclear envelope prior to the permeabilization of the nuclear, endoplasmic reticulum, and plasma membranes at a time which corresponded with the release of the progeny. The permeabilization of these cellular membranes temporally correlated with late protein expression and was not observed upon the inhibition of their synthesis. To address whether one or more of the late proteins possessed an inherent capacity to induce membrane permeabilization, we examined the permeability of Escherichia coli that separately expressed the late proteins. VP2 and VP3, but not VP1, caused the permeabilization of bacterial membranes. Additionally, VP3 expression resulted in bacterial cell lysis. These findings demonstrate that VP3 possesses an inherent lytic property that is independent of eukaryotic signaling or cell death pathways.  相似文献   

3.
Inoue T  Tsai B 《PLoS pathogens》2011,7(5):e1002037
Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer.  相似文献   

4.
For nonenveloped viruses such as Simian Virus 40, the mechanism used to translocate viral components across membranes is poorly understood. Previous results indicated that the minor structural proteins, VP2 and VP3, might act as membrane proteins during infection. Here, purified VP2 and VP3 were found to form pores in host cell membranes. To identify possible membrane domains, individual hydrophobic domains from VP2 and VP3 were expressed in a model protein and tested for their ability to integrate into membranes. Several domains from the late proteins supported endoplasmic reticulum membrane insertion as transmembrane domains. Mutations in VP2 and VP3 were engineered that inhibited membrane insertion and pore formation. When these mutations were introduced into the viral genome, viral propagation was inhibited. This comprehensive approach revealed that the viroporin activity of VP2 and VP3 was inhibited by targeted disruptions of individual hydrophobic domains and the loss of membrane disruption activity impaired viral infection.  相似文献   

5.
6.
Nonenveloped viruses such as Simian Virus 40 (SV40) exploit established cellular pathways for internalization and transport to their site of penetration. By analyzing mutant SV40 genomes that do not express VP2 or VP3, we found that these structural proteins perform essential functions that are regulated by VP1. VP2 significantly enhanced SV40 particle association with the host cell, while VP3 functioned downstream. VP2 and VP3 both integrated posttranslationally into the endoplasmic reticulum (ER) membrane. Association with VP1 pentamers prevented their ER membrane integration, indicating that VP1 controls the function of VP2 and VP3 by directing their localization between the particle and the ER membrane. These findings suggest a model in which VP2 aids in cell binding. After capsid disassembly within the ER lumen, VP3, and perhaps VP2, oligomerizes and integrates into the ER membrane, potentially creating a viroporin that aids in viral DNA transport out of the ER.  相似文献   

7.
Localization of VP40 in Marburg virus (MBGV)-infected cells was studied by using immunofluorescence and immunoelectron microscopic analysis. VP40 was detected in association with nucleocapsid structures, present in viral inclusions and at sites of virus budding. Additionally, VP40 was identified in the foci of virus-induced membrane proliferation and in intracellular membrane clusters which had the appearance of multivesicular bodies (MVBs). VP40-containing MVBs were free of nucleocapsids. When analyzed by immunogold labeling, the concentration of VP40 in MVBs was six times higher than in nucleocapsid structures. Biochemical studies showed that recombinant VP40 represented a peripheral membrane protein that was stably associated with membranes by hydrophobic interaction. Recombinant VP40 was also found in association with membranes of MVBs and in filopodia- or lamellipodia-like protrusions at the cell surface. Antibodies against marker proteins of various cellular compartments showed that VP40-positive membranes contained Lamp-1 and the transferrin receptor, confirming that they belong to the late endosomal compartment. VP40-positive membranes were also associated with actin. Western blot analysis of purified MBGV structural proteins demonstrated trace amounts of actin, Lamp-1, and Rab11 (markers of recycling endosomes), while markers for other cellular compartments were absent. Our data indicate that MBGV VP40 was able to interact with membranes of late endosomes in the course of viral infection. This capability was independent of other MBGV proteins.  相似文献   

8.
Viral protein 40 (VP40) of Ebola virus appears equivalent to matrix proteins of other viruses, yet little is known about its role in the viral life cycle. To elucidate the functions of VP40, we investigated its ability to induce the formation of membrane-bound particles when it was expressed apart from other viral proteins. We found that VP40 is indeed able to induce particle formation when it is expressed in mammalian cells, and this process appeared to rely on a conserved N-terminal PPXY motif, as mutation or loss of this motif resulted in markedly reduced particle formation. These findings demonstrate that VP40 alone possesses the information necessary to induce particle formation, and this process most likely requires cellular WW domain-containing proteins that interact with the PPXY motif of VP40. The ability of VP40 to bind cellular membranes was also studied. Flotation gradient analysis indicated that VP40 binds to membranes in a hydrophobic manner, as NaCl at 1 M did not release the protein from the lipid bilayer. Triton X-114 phase-partitioning analysis suggested that VP40 possesses only minor features of an integral membrane protein. We confirmed previous findings that truncation of the 50 C-terminal amino acids of VP40 results in decreased association with cellular membranes and demonstrated that this deletion disrupts hydrophobic interactions of VP40 with the lipid bilayer, as well as abolishing particle formation. Truncation of the 150 C-terminal amino acids or 100 N-terminal amino acids of VP40 enhanced the protein's hydrophobic association with cellular membranes. These data suggest that VP40 binds the lipid bilayer in an efficient yet structurally complex fashion.  相似文献   

9.
We have investigated the process of release of simian virus 40 (SV40) virions from several monkey kidney cell lines. High levels of virus release were observed prior to any significantly cytopathic effects in all cell lines examined, indicating that SV40 utilizes a mechanism for escape from the host cell which does not involve cell lysis. We demonstrate that SV40 release was polarized in two epithelial cell types (Vero C1008 and primary African green monkey kidney cells) grown on permeable supports; release of virus occurs almost exclusively at apical surfaces. In contrast, equivalent amounts of SV40 virions were recovered from apical and basal culture fluids of nonpolarized CV-1 cells. SV40 virions were observed in large numbers on apical surfaces of epithelial cells and in cytoplasmic smooth membrane vesicles. The sodium ionophore monensin, an inhibitor of vesicular transport, was found to inhibit SV40 release without altering viral protein synthesis or infectious virus production.  相似文献   

10.
The abundant nuclear enzyme poly(ADP-ribose) polymerase (PARP) functions in DNA damage surveillance and repair and at the decision between apoptosis and necrosis. Here we show that PARP binds to simian virus 40 (SV40) capsid proteins VP1 and VP3. Furthermore, its enzymatic activity is stimulated by VP3 but not by VP1. Experiments with purified mutant proteins demonstrated that the PARP binding domain in VP3 is localized to the 35 carboxy-terminal amino acids, while a larger peptide of 49 amino acids was required for full stimulation of its activity. The addition of 3-aminobenzamide (3-AB), a known competitive inhibitor of PARP, demonstrated that PARP participates in the SV40 life cycle. The titer of SV40 propagated on CV-1 cells was reduced by 3-AB in a dose-dependent manner. Additional experiments showed that 3-AB did not affect viral DNA replication or capsid protein production. PARP did not modify the viral capsid proteins in in vitro poly(ADP-ribosylation) assays, implying that it does not affect SV40 infectivity. On the other hand, it greatly reduced the magnitude of the host cytopathic effects, a hallmark of SV40 infection. Additional experiments suggested that the stimulation of PARP activity by VP3 leads the infected cell to a necrotic pathway, characterized by the loss of membrane integrity, thus facilitating the release of mature SV40 virions from the cells. Our studies identified a novel function of the minor capsid protein VP3 in the recruitment of PARP for the SV40 lytic process.  相似文献   

11.
Viruses intricately interact with and modulate cellular membranes at several stages of their replication, but much less is known about the role of viral lipids compared to proteins and nucleic acids. All animal viruses have to cross membranes for cell entry and exit, which occurs by membrane fusion (in enveloped viruses), by transient local disruption of membrane integrity, or by cell lysis. Furthermore, many viruses interact with cellular membrane compartments during their replication and often induce cytoplasmic membrane structures, in which genome replication and assembly occurs. Recent studies revealed details of membrane interaction, membrane bending, fission, and fusion for a number of viruses and unraveled the lipid composition of raft-dependent and -independent viruses. Alterations of membrane lipid composition can block viral release and entry, and certain lipids act as fusion inhibitors, suggesting a potential as antiviral drugs. Here, we review viral interactions with cellular membranes important for virus entry, cytoplasmic genome replication, and virus egress.  相似文献   

12.
Mouse polyomavirus enters host cells internalized, similar to simian virus 40 (SV40), in smooth monopinocytic vesicles, the movement of which is associated with transient actin disorganization. The major capsid protein (VP1) of the incoming polyomavirus accumulates on membranes around the cell nucleus. Here we show that unlike SV40, mouse polyomavirus infection is not substantially inhibited by brefeldin A, and colocalization of VP1 with beta-COP during early stages of polyomavirus infection in mouse fibroblasts was observed only rarely. Thus, these viruses obviously use different traffic routes from the plasma membrane toward the cell nucleus. At approximately 3 h postinfection, a part of VP1 colocalized with the endoplasmic reticulum marker BiP, and a subpopulation of virus was found in perinuclear areas associated with Rab11 GTPase and colocalized with transferrin, a marker of recycling endosomes. Earlier postinfection, a minor subpopulation of virions was found to be associated with Rab5, known to be connected with early endosomes, but the cell entry of virus was slower than that of transferrin or cholera toxin B-fragment. Neither Rab7, a marker of late endosomes, nor LAMP-2 lysosomal glycoprotein was found to colocalize with polyomavirus. In situ hybridization with polyomavirus genome-specific fluorescent probes clearly demonstrated that, regardless of the multiplicity of infection, only a few virions delivered their genomic DNA into the cell nucleus, while the majority of viral genomes (and VP1) moved back from the proximity of the nucleus to the cytosol, apparently for their degradation.  相似文献   

13.
14.
Flavivirus infection causes extensive proliferation and reorganization of host cell membranes to form specialized structures called convoluted membranes/paracrystalline arrays and vesicle packets (VP), the latter of which is believed to harbor flaviviral replication complexes. Using detergents and trypsin and micrococcal nuclease, we provide for the first time biochemical evidence for a double membrane compartment that encloses the replicative form (RF) RNA of the three pathogenic flaviviruses West Nile, Japanese encephalitis, and dengue viruses. The bounding membrane enclosing the VP was readily solubilized with nonionic detergents, rendering the catalytic amounts of enzymatically active protein component(s) of the replicase machinery partially sensitive to trypsin but allowing limited access for nucleases only to the vRNA and single-stranded tails of the replicative intermediate RNA. The RF co-sedimented at high speed from nonionic detergent extracts of virus-induced heavy membrane fractions along with the released individual inner membrane vesicles whose size of 75-100 nm as well as association with viral NS3 was revealed by immunoelectron microscopy. Viral RF remained nuclease-resistant even after ionic detergents solubilized the more refractory inner VP membrane. All of the viral RNA species became nuclease-sensitive following membrane disruption only upon prior trypsin treatment, suggesting that proteins coat the viral genomic RNA as well as RF within these membranous sites of flaviviral replication. These results collectively demonstrated that the newly formed viral genomic RNA associated with the VP are oriented outwards, while the RF is located inside the nonionic detergent-resistant vesicles.  相似文献   

15.
16.
The Ebola virus matrix protein VP40 is a major viral structural protein and plays a central role in virus assembly and budding at the plasma membrane of infected cells. For efficient budding, a full amino terminus of VP40 is required, which includes a PPXY and a PT/SAP motif, both of which have been proposed to interact with cellular proteins. Here, we report that Ebola VP40 can interact with cellular factors human Nedd4 and Tsg101 in vitro. We show that WW domain 3 of human Nedd4 is necessary and sufficient for binding to the PPXY motif of VP40, which requires an oligomeric conformation of VP40. Single particle electron microscopy reconstructions indicate that WW3 of Nedd4 is in close contact with the N-terminal domain of hexameric VP40. In contrast, the ubiquitin enzyme variant domain of Tsg101 was sufficient for binding to the PT/SAP motif of VP40, regardless of the oligomeric state of the matrix protein. These results suggest that hNedd4 and Tsg101 may play complimentary roles at a late stage of the assembly process, by recruiting cellular factors of two independent pathways to the site of budding at the plasma membrane.  相似文献   

17.
18.
The Marburg virus (MARV) envelope consists of a lipid membrane and two major proteins, the matrix protein VP40 and the glycoprotein GP. Both proteins use different intracellular transport pathways: GP utilizes the exocytotic pathway, while VP40 is transported through the retrograde late endosomal pathway. It is currently unknown where the proteins combine to form the viral envelope. In the present study, we identified the intracellular site where the two major envelope proteins of MARV come together as peripheral multivesicular bodies (MVBs). Upon coexpression with VP40, GP is redistributed from the trans-Golgi network into the VP40-containing MVBs. Ultrastructural analysis of MVBs suggested that they provide the platform for the formation of membrane structures that bud as virus-like particles from the cell surface. The virus-like particles contain both VP40 and GP. Single expression of GP also resulted in the release of particles, which are round or pleomorphic. Single expression of VP40 led to the release of filamentous structures that closely resemble viral particles and contain traces of endosomal marker proteins. This finding indicated a central role of VP40 in the formation of the filamentous structure of MARV particles, which is similar to the role of the related Ebola virusVP40. In MARV-infected cells, VP40 and GP are colocalized in peripheral MVBs as well. Moreover, intracellular budding of progeny virions into MVBs was frequently detected. Taken together, these results demonstrate an intracellular intersection between GP and VP40 pathways and suggest a crucial role of the late endosomal compartment for the formation of the viral envelope.  相似文献   

19.
The nonenveloped polyomavirus (Py) traffics from the plasma membrane to the endoplasmic reticulum (ER), where it penetrates the ER membrane, allowing the viral genome to reach the nucleus to cause infection. The mechanism of membrane penetration for Py, and for other nonenveloped viruses, remains poorly characterized. We showed previously that the ER chaperone ERp29 alters the conformation of Py coat protein VP1, enabling the virus to interact with membranes. Here, we developed a membrane perforation assay and showed that the ERp29-activated Py perforates the physiologically relevant ER membrane, an event that likely initiates viral penetration. Biochemical analysis revealed that the internal protein VP2 is exposed in the activated viral particle. Accordingly, we demonstrate that VP2 binds to, integrates into, and perforates the ER membrane; the other internal protein, VP3, binds to and integrates into the ER membrane but is not sufficient for perforation. Our data thus link the activity of a cellular factor on a nonenveloped virus to the membrane perforation event and identify a viral component that mediates this process.  相似文献   

20.
Marburg virus (MARV) matrix protein VP40 plays a key role in virus assembly, recruiting nucleocapsids and the surface protein GP to filopodia, the sites of viral budding. In addition, VP40 is the only MARV protein able to induce the release of filamentous virus-like particles (VLPs) indicating its function in MARV budding. Here, we demonstrated that VP40 is phosphorylated and that tyrosine residues at positions 7, 10, 13 and 19 represent major phosphorylation acceptor sites. Mutagenesis of these tyrosine residues resulted in expression of a non-phosphorylatable form of VP40 (VP40(mut) ). VP40(mut) was able to bind to cellular membranes, produce filamentous VLPs, and inhibit interferon-induced gene expression similarly to wild-type VP40. However, VP40(mut) was specifically impaired in its ability to recruit nucleocapsid structures into filopodia, and released infectious VLPs (iVLPs) had low infectivity. These results indicated that tyrosine phosphorylation of VP40 is important for triggering the recruitment of nucleocapsids to the viral envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号