首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heterotrimeric phenyllactate dehydratase from Clostridium sporogenes, FldABC, catalyses the reversible dehydration of (R)-phenyllactate to (E)-cinnamate in two steps: (i) CoA-transfer from the cofactor cinnamoyl-CoA to phenyllactate to yield phenyllactyl-CoA and the product cinnamate mediated by FldA, a (R)-phenyllactate CoA-transferase; followed by (ii) dehydration of phenyllactyl-CoA to cinnamoyl-CoA mediated by heterodimeric FldBC, a phenyllactyl-CoA dehydratase. Phenyllactate dehydratase requires initiation by ATP, MgCl2 and a reducing agent such as dithionite mediated by an extremely oxygen-sensitive initiator protein (FldI) present in the cell-free extract. All four genes coding for these proteins were cloned and shown to be clustered in the order fldAIBC, which shares over 95% sequence identity of nucleotide and protein levels with a gene cluster detected in the genome of the closely related Clostridium botulinum Hall strain A. FldA shows sequence similarities to a new family of CoA-transferases, which apparently do not form covalent enzyme CoA-ester intermediates. An N-terminal Strep II-Tag containing enzymatically active FldI was overproduced and purified from Escherichia coli. FldI was characterized as a homodimeric protein, which contains one [4Fe-4S]1+/2+ cluster with an electron spin S = 3/2 in the reduced form. The amino acid sequence as well as the chemical and EPR-properties of the pure protein are very similar to those of component A of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans (HgdC), which was able to replace FldI in the activation of phenyllactate dehydratase. Only in the oxidized state, FldI and component A exhibit significant ATPase activity, which appears to be essential for unidirectional electron transfer. Both subunits of phenyllactyl-CoA dehydratase (FldBC) show significant sequence similarities to both subunits of 2-hydroxyglutaryl-CoA dehydratase (HgdAB). The fldAIBC gene cluster resembles the hadAIBC gene cluster in the genome of Clostridium difficile and the hadABC,I genes in C. botulinum. The four subunits of these deduced 2-hydroxyacid dehydratases (65-81% amino acid sequence identity between the had genes) probably code for a 2-hydroxyisocaproate dehydratase involved in leucine fermentation. This enzyme could be the target for metronidazole in the treatment of pseudomembranous enterocolitis caused by C. difficile.  相似文献   

2.
Phenyllactate dehydratase from Clostridium sporogenes grown anaerobically on L-phenylalanine catalyses the reversible syn-dehydration of (R)-phenyllactate to (E)-cinnamate. Purification yielded a heterotrimeric enzyme complex (130 +/- 15 kDa) composed of FldA (46 kDa), FldB (43 kDa) and FldC (40 kDa). By re-chromatography on Q-Sepharose, the major part of FldA could be separated and identified as oxygen insensitive cinnamoyl-CoA:phenyllactate CoA-transferase, whereas the transferase depleted trimeric complex retained oxygen sensitive phenyllactate dehydratase activity and contained about one [4Fe-4S] cluster. The dehydratase activity required 10 microM FAD, 0.4 mM ATP, 2.5 mM MgCl2, 0.1 mM NADH, 5 microM cinnamoyl-CoA and small amounts of cell-free extract (10 microg protein per mL) similar to that known for 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. The N-terminus of the homogenous FldA (39 amino acids) is homologous to that of CaiB (39% sequence identity) involved in carnitine metabolism in Escherichia coli. Both enzymes are members of an emerging group of CoA-transferases which exhibit high substrate specificity but apparently do not form enzyme CoA-ester intermediates. It is concluded that dehydration of (R)-phenyllactate to (E)-cinnamate proceeds in two steps, a CoA-transfer from cinnamoyl-CoA to phenyllactate, catalysed by FldA, followed by the dehydration of phenyllactyl-CoA, catalysed by FldB and FldC, whereby the noncovalently bound prosthetic group cinnamoyl-CoA is regenerated. This demonstrates the necessity of a 2-hydroxyacyl-CoA intermediate in the dehydration of 2-hydroxyacids. The transient CoA-ester formation during the dehydration of phenyllactate resembles that during citrate cleavage catalysed by bacterial citrate lyase, which contain a derivative of acetyl-CoA covalently bound to an acyl-carrier-protein (ACP).  相似文献   

3.
Hans M  Bill E  Cirpus I  Pierik AJ  Hetzel M  Alber D  Buckel W 《Biochemistry》2002,41(18):5873-5882
2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans catalyzes the chemical difficult elimination of water from (R)-2-hydroxyglutaryl-CoA to glutaconyl-CoA. The enzyme consists of two oxygen-sensitive protein components, the homodimeric activator (A) with one [4Fe-4S]1+/2+ cluster and the heterodimeric dehydratase (D) with one nonreducible [4Fe-4S]2+ cluster and reduced riboflavin 5'-monophosphate (FMNH2). For activation, ATP, Mg2+, and a reduced flavodoxin (16 kDa) purified from A. fermentans are required. The [4Fe-4S](1+/2+) cluster of component A is exposed to the solvent since it is accessible to iron chelators. Upon exchange of the bound ADP by ATP, the chelation rate is 8-fold enhanced, indicating a large conformational change. Oxidized component A exhibits ATPase activity of 6 s(-1), which is completely abolished upon reduction by one electron. UV-visible spectroscopy revealed a spontaneous one-electron transfer from flavodoxin hydroquinone (E(0)' = -430 mV) to oxidized component A, whereby the [4Fe-4S]2+ cluster of component A became reduced. Combined kinetic, EPR, and M?ssbauer spectrocopic investigations exhibited an ATP-dependent oxidation of component A by component D. Whereas the [4Fe-4S]2+ cluster of component D remained in the oxidized state, a new EPR signal became visible attributed to a d1-metal species, probably Mo(V). Metal analysis with neutron activation and atomic absorption spectroscopy gave 0.07-0.2 Mo per component D. In summary, the data suggest that in the presence of ATP one electron is transferred from flavodoxin hydroquinone via the [4Fe-4S]1+/2+ cluster of component A to Mo(VI) of component D, which is thereby reduced to Mo(V). The latter may supply the electron necessary for transient charge reversal in the unusual dehydration.  相似文献   

4.
Abstract In amino acid fermenting anaerobic bacteria a set of unusual dehydratases is found which use 2-hydroxyacyl-CoA, 4-hydroxybutyryl-CoA or 5-hydroxyvaleryl-CoA as substrates. The extremely oxygen-sensitive 2-hydroxyacyl-CoA dehydratases catalysing the elimination of water from ( R )-lactyl-CoA to acryloyl-CoA or from ( R )-2-hydroxyglutaryl-CoA to glutaconyl-CoA contain iron-sulfur clusters as well as riboflavin and require additional activation by ATP. The dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA is catalysed by a moderately oxygen-sensitive enzyme also containing an iron-sulfur cluster and FAD. In all these reactions a non-activated C-H-bond at C3 has to be cleaved by mechanisms not yet elucidated. The dehydration of 5-hydroxyvaleryl-CoA to 4-pentenoyl-CoA, however, has been characterised as a redox process mediated by enzyme-bound FAD. Finally, an iron-sulfur cluster-containing but pyridoxal-phosphate-independent l -serine dehydratase is described.  相似文献   

5.
Kim J  Darley D  Buckel W 《The FEBS journal》2005,272(2):550-561
The hadBC and hadI genes from Clostridium difficile were functionally expressed in Escherichia coli and shown to encode the novel 2-hydroxyisocaproyl-CoA dehydratase HadBC and its activator HadI. The activated enzyme catalyses the dehydration of (R)-2-hydroxyisocaproyl-CoA to isocaprenoyl-CoA in the pathway of leucine fermentation. The extremely oxygen-sensitive homodimeric activator as well as the heterodimeric dehydratase, contain iron and inorganic sulfur; besides varying amounts of zinc, other metal ions, particularly molybdenum, were not detected in the dehydratase. The reduced activator transfers one electron to the dehydratase concomitant with hydrolysis of ATP, a process similar to that observed with the unrelated nitrogenase. The thus activated dehydratase was separated from the activator and ATP; it catalyzed about 10(4) dehydration turnovers until the enzyme became inactive. Adding activator, ATP, MgCl(2), dithionite and dithioerythritol reactivated the enzyme. This is the first demonstration with a 2-hydroxyacyl-CoA dehydratase that the catalytic electron is recycled after each turnover. In agreement with this observation, only substoichiometric amounts of activator (dehydratase/activator = 10 mol/mol) were required to generate full activity.  相似文献   

6.
The dehydration of (R)-2-hydroxyglutarate to glutaconate is catalysed by a soluble enzyme system found in extracts of Acidaminococcus fermentans. The enzyme has to be activated by ATP, NADH and MgCl2 prior to the reaction which requires dithioerythritol, acetylphosphate and CoASH. Activity and stability of the enzyme depend on anaerobic conditions. Experiments with ATP labelled at different atoms indicated an adenylation or adenylphosphorylation during the activation. However, only the activity but not the label was removed by inactivators such as 0.1 mM 2,4-dinitrophenol or 1 mM hydroxylamine. In the presence of ATP, MgCl2 and dithioerythritol the dehydratase was purified 2-fold by chromatography on Sephacryl S-300, but on DEAE-Sephacel all activity was lost. ESR-spectra and chemical considerations led to the conclusion that a hydroxyradical plays a central role in the mechanism of the dehydration.Abbreviations Pipes 1,4-piperazineethanesulfonic acid - DTE dithiothritol - ESR electron spin resonance  相似文献   

7.
Expression of six genes from two glutamate fermenting clostridia converted Escherichia coli into a producer of glutaconate from 2-oxoglutarate of the general metabolism (Djurdjevic, I. et al. 2010, Appl. Environ. Microbiol.77, 320-322). The present work examines whether this pathway can also be used to reduce 2-oxoadipate to (R)-2-hydroxyadipic acid and dehydrate its CoA thioester to 2-hexenedioic acid, an unsaturated precursor of the biotechnologically valuable adipic acid (hexanedioic acid). 2-Hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum, the key enzyme of this pathway and a potential radical enzyme, catalyzes the reversible dehydration of (R)-2-hydroxyglutaryl-CoA to (E)-glutaconyl-CoA. Using a spectrophotometric assay and mass spectrometry, it was found that (R)-2-hydroxyadipoyl-CoA, oxalocrotonyl-CoA, muconyl-CoA, and butynedioyl-CoA, but not 3-methylglutaconyl-CoA, served as alternative substrates. Hydration of butynedioyl-CoA most likely led to 2-oxosuccinyl-CoA, which spontaneously hydrolyzed to oxaloacetate and CoASH. The dehydratase is not specific for the CoA-moiety because (R)-2-hydroxyglutaryl-thioesters of N-acetylcysteamine and pantetheine served as almost equal substrates. Whereas the related 2-hydroxyisocaproyl-CoA dehydratase generated the stable and inhibitory 2,4-pentadienoyl-CoA radical, the analogous allylic ketyl radical could not be detected with muconyl-CoA and 2-hydroxyglutaryl-CoA dehydratase. With the exception of (R)-2-hydroxyglutaryl-CoA, all mono-CoA-thioesters of dicarboxylates used in this study were synthesized with glutaconate CoA-transferase from Acidaminococcus fermentans. The now possible conversion of (R)-2-hydroxyadipate via (R)-2-hydroxyadipoyl-CoA and 2-hexenedioyl-CoA to 2-hexenedioate paves the road for a bio-based production of adipic acid.  相似文献   

8.
Anaerobically prepared cell-free extracts from Fusobacterium nucleatum contain 2-hydroxyglutaryl-CoA dehydratase with a specific activity of 20 nkat mg-1. The enzyme was purified 24-fold to a specific activity of 480 nkat mg-1 by anion exchange chromatography, gel filtration and chromatography on Blue-Sepharose. The activity of the purified enzyme was strictly dependent on the reductant Ti(III)citrate and stimulated 25-fold by 0.15 mM ATP and 5 mM MgCl2. ATP is hydrolysed to ADP during incubation with 2-hydroxyglutaryl-CoA dehydratase in the presence or absence of the substrate. The enzyme is extremely sensitive towards oxygen and is inhibited by 10 M chloramphenicol, 10 M 2,4-dinitrophenol or 0.15 mM hydroxylamine. The pure enzyme consists of three subunits (49 kDa), (39 kDa) and (24 kDa) in approximately equal amounts. In this respect the enzyme differs from the related 2-hydroxy-glutaryl-CoA dehydratase from Acidaminococcus fermentans and lactyl-CoA dehydratase from Clostridium propionicum both of which are composed of only two subunits with sizes comparable to those of and but require an additional protein for activity. The relative molecular mass of the native enzyme of about 100 kDa suggests a trimeric -structure. The homogeneous enzyme contains riboflavin (0.5 mol/112 kDa), iron and sulfur (3.5 mol/112 kDa each). Polyclonal antibodies directed against the 2-hydroxyglutaryl-CoA dehydratase from A. fermentans did not crossreact with cell free extracts or purified dehydratase from F. nucleatum. A comparison of the N-terminal amino acid sequences of the dehydratase subunits from A. fermentans and F. nucleatum, however, showed some similarities in the -subunits.Non-standard abbreviations DTT dithiothreitol - PAGE polyaccrylamide gel electrophoresis - VIS visible  相似文献   

9.
Two NADPH-dependent oxidoreductases catalyzing the enantioselective reduction of 3-oxo esters to (S)- and (R)-3-hydroxy acid esters, [hereafter called (S)- and (R)-enzymes] have been purified 121- and 332-fold, respectively, from cell extracts of Saccharomyces cerevisiae by means of streptomycin sulfate treatment, Sephadex G-25 filtration, DEAE-Sepharose CL-6B chromatography, Sephadex G-150 filtration, Sepharose 6B filtration and hydroxyapatite chromatography. The relative molecular mass Mr, of the (S)-enzyme was estimated to be 48,000-50,000 on Sephadex G-150 column chromatography and 48,000 on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The enzyme was most active at pH 6.9 and reduced 3-oxo esters, 4-oxo and 5-oxo acids and esters enantioselectively to (S)- hydroxy compounds in the presence of NADPH. The Km values for ethyl 3-oxobutyrate, ethyl 3-oxohexanoate, 4-oxopentanoic and 5-oxohexanoic acid were determined as 0.9 mM, 5.3 mM, 17.1 mM and 13.1 mM, respectively. The Mr of the (R)-enzyme, estimated by means of column chromatography on Sepharose 6B, was 800,000. Under dissociating conditions of SDS/polyacrylamide gel electrophoresis the enzyme resolved into subunits of Mr 200,000 and 210,000, respectively. The enzyme is optimally active at pH 6.1, catalyzing specifically the reduction of 3-oxo esters to (R)-hydroxy esters, using NADPH for coenzyme. Km values for ethyl 3-oxobutyrate and ethyl 3-oxohexanoate were determined as 17.0 mM and 2.0 mM, respectively. Investigations with purified fatty acid synthase of baker's yeast revealed that the (R)-enzyme was identical with a subunit of this multifunctional complex; intact fatty acid synthase (Mr 2.4 X 10(6)) showed no activity in catalyzing the reduction of 3-oxo esters.  相似文献   

10.
Several clostridia and fusobacteria ferment alpha-amino acids via (R)-2-hydroxyacyl-CoA, which is dehydrated to enoyl-CoA by syn-elimination. This reaction is of great mechanistic interest, since the beta-hydrogen, to be eliminated as proton, is not activated (pK 40-50). A mechanism has been proposed, in which one high-energy electron acts as cofactor and transiently reduces the electrophilic thiol ester carbonyl to a nucleophilic ketyl radical anion. The 2-hydroxyacyl-CoA dehydratases are two-component systems composed of an extremely oxygen-sensitive component A, an activator, and component D, the actual dehydratase. Component A, a homodimer with one [4Fe-4S]cluster, transfers an electron to component D, a heterodimer with 1-2 [4Fe-4S]clusters and FMN, concomitant with hydrolysis of two ATP. From component D the electron is further transferred to the substrate, where it facilitates elimination of the hydroxyl group. In the resulting enoxyradical the beta-hydrogen is activated (pK14). After elimination the electron is handed-over to the next incoming substrate without further hydrolysis of ATP. The helix-cluster-helix architecture of component A forms an angle of 105 degrees, which probably opens to 180 degrees upon binding of ATP resembling an archer shooting arrows. Therefore we designated component A as 'Archerase'. Here, we describe 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans, Clostridium symbiosum and Fusobacterium nucleatum, 2-phenyllactate dehydratase from Clostridium sporogenes, 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile, and lactyl-CoA dehydratase from Clostridium propionicum. A relative of the 2-hydroxyacyl-CoA dehydratases is benzoyl-CoA reductase from Thauera aromatica. Analogous but unrelated archerases are the iron proteins of nitrogenase and bacterial protochlorophyllide reductase. In anaerobic organisms, which do not oxidize 2-oxo acids, a second energy-driven electron transfer from NADH to ferredoxin, the electron donor of component A, has been established. The transfer is catalysed by a membrane-bound NADH-ferredoxin oxidoreductase driven by an electrochemical Na(+)-gradient. This enzyme is related to the Rnf proteins involved in Rhodobacter capsulatus nitrogen fixation.  相似文献   

11.
Acidaminococcus fermentans degrades glutamate via the hydroxyglutarate pathway, which involves the syn-elimination of water from (R)-2-hydroxyglutaryl-CoA in a key reaction of the pathway. This anaerobic process is catalyzed by 2-hydroxyglutaryl-CoA dehydratase, an enzyme with two components (A and D) that reversibly associate during reaction cycles. Component A (CompA), a homodimeric protein of 2x27 kDa, contains a single, bridging [4Fe-4S] cluster and uses the hydrolysis of ATP to deliver an electron to the dehydratase component (CompD), where the electron is used catalytically. The structure of the extremely oxygen-sensitive CompA protein was solved by X-ray crystallography to 3 A resolution. The protein was found to be a member of the actin fold family, revealing a similar architecture and nucleotide-binding site. The key differences between CompA and other members of the actin fold family are: (i) the presence of a cluster binding segment, the "cluster helix"; (ii) the [4Fe-4S] cluster; and (iii) the location of the homodimer interface, which involves the bridging cluster. Possible reaction mechanisms are discussed in light of the close structural similarity to members of the actin-fold family and the functional similarity to the nitrogenase Fe- protein.  相似文献   

12.
1. delta-Aminolaevulate dehydratase (EC 4.2.1.24) was purified 80-fold from tobacco leaves and its properties were studied. 2. The enzyme had optimum pH7.4 in potassium phosphate buffer, K(m)6.25x10(-4)m at 37 degrees and pH7.4, optimum temperature 45 degrees and an activation energy of 11100 cal./mole. 3. The enzyme lost activity when prepared in the absence of cysteine, and this activity was only partly restored by the later addition of thiols. Reagents for thiol groups inactivated the enzyme. 4. Mg(2+) was essential for activity, and EDTA and Fe(2+) were inhibitory; Mn(2+) was an activator or an inhibitor depending on the concentration.  相似文献   

13.
Both temperature-stable and temperature-labile testicular cholesteryl ester hydrolases are shown to be regulated by an endogenous cAMP-dependent protein kinase activity. The temperature-stable form (Mr = 28,000) was activated 3-fold by the endogenous kinase. This activation was completely blocked by protein kinase inhibitor. Following purification by high performance gel permeation chromatography, the temperature-stable form could also be activated 2-fold by bovine heart protein kinase, type I. The partially purified endogenous protein kinase, type I, which was completely separated from hydrolase activity by ion exchange chromatography, increased hydrolase activity 2-fold in the presence of optimal concentrations of cAMP, ATP, and Mg2+. Cholesteryl ester hydrolase activity could be stabilized indefinitely at -10 degrees C with the addition of 0.1 mM thioglycolate, but not by other thiol reagents. In contrast, the endogenous protein kinase activity was lost from 104,000 X g supernatants after 14 days. However, the property of activation could be restored by addition of bovine heart protein kinase. The temperature-labile hydrolase (Mr = 72,000) could be totally inactivated by a Mg2+-dependent, fluoride-sensitive cytosolic factor and reactivated by cAMP-dependent protein kinase. These observations strongly suggest that the inactivating factor is a phosphoprotein phosphatase.  相似文献   

14.
Two distinct types of fumarase were purified to homogeneity from aerobically grown Escherichia coli W cells. The amino acid sequences of their NH2-terminals suggest that the two enzymes are the products of the fumA gene (FUMA) and fumC gene (FUMC), respectively. FUMA was separated from FUMC by chromatography on a Q-Sepharose column, and was further purified to homogeneity on Alkyl-Superose, Mono Q, and Superose 12 columns. FUMA is a dimer composed of identical subunits (Mr = 60,000). Although the activity of FUMA rapidly decreased during storage, reactivation was attained by anaerobic incubation with Fe2+ and thiols. Studies on the inactivation and reactivation of FUMA suggested that oxidation and the concomitant release of iron inactivated the enzyme in a reversible manner. While the inactivated FUMA was EPR-detectable, through a signal with g perpendicular = 2.02 and g = 2.00, the active enzyme was EPR-silent. These results suggested FUMA is a member of the 4Fe-4S hydratases represented by aconitase. After the separation of FUMC from FUMA, purification of the former enzyme was accomplished by chromatography on Phenyl-Superose and Matrex Gel Red A columns. FUMC was stable, Fe-independent and quite similar to mammalian fumarases in enzymatic properties.  相似文献   

15.
Effects of K-252a, (8R*, 9S*, 11S*)-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo[a,g]cycloocta [cde]trinden-1-one, purified from the culture broth of Nocardiopsis sp., on the activity of myosin light chain kinase were investigated. 1) K-252a (1 x 10(-5) M) affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca2+-dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca2+-independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10(-6) M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10(-4) M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lower in the presence of 100 microM ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using [gama-32P]ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP (Ki = 20 nM). These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase. The direct action of the compound on the enzyme would explain the multivarious inhibition of myosin ATPase, of superprecipitation, and of the contractile response of smooth muscle.  相似文献   

16.
Glycogen phosphorylase from swine adipose tissue was purified nearly 700-fold using ethanol precipitation, DEAE-cellulose adsorption, AMP-agarose affinity chromatography, and agarose gel filtration. The purified enzyme migrated as one major and several minor components during polyacrylamide gel electrophoresis. Activity was associated with the major component and at least one of the minor components. The molecular weight of the disaggregated, reduced, and alkylated enzyme, estimated by polyacrylamide gel electrophoresis performed in the presence of sodium dodecyl sulfate, was 90,000. Stability of the purified enzyme was considerably increased in the presence of AMP. The isoelectric pH of the enzyme in crude homogenates was 6.3. The sedimentation coefficient of the purified enzyme (7.9 S) and that in crude homogenates (7.3 S) was determined by sucrose density gradient sedimentation. Optimal pH for activity was between pH 6.5 and 7.1. Apparent Km values for glycogen and inorganic phosphate were 0.9 mg/ml and 6.6 mM, respectively. The Ka for AMP was 0.21 mM. Enzyme activity was increased by K2SO4, KF, KCl, and MgCl2 and decreased by NaCl, Na2SO4, D-glucose, and ATP. Inhibition by glucose was noncompetitive with the activator AMP; inhibition by ATP was partially competitive with AMP. The purified enzyme was activated by incubation with skeletal muscle phosphorylase kinase. Enzyme in crude homogenates was activated by the addition of MgCl2 and ATP; activation was not blocked by addition of protein kinase inhibitor, suggesting that phosphorylase kinase in homogenates of swine adipose tissue is present largely in an activated form. Deactivation of phosphorylase a by phosphorylase phosphatase was studied using enzyme purified approximately 200-fold from swine adipose tissue by ethanol precipitation, DEAE-cellulose chromatography, and gel filtration. The Km of the adipose tissue phosphatase for skeletal muscle phosphorylase a was 6 muM. The purified swine adipose tissue phosphorylase, labeled with 32-P, was inactivated and dephosphorylated by the adipose tissue phosphatase. Dephosphorylation of both skeletal muscle and adipose tissue substrates was inhibited by AMP and glucose reversed this inhibition. Several lines of evidence suggest that AMP inhibition was due to an action on the substrate rather than on the enzyme. We have previously reported that the system for phosphorylase activation in rat fat cells differs in some important characteristics from that in skeletal muscle. However, both swine fat phosphorylase and phosphorylase phosphatase have major properties very similar to those described for the enzymes from skeletal muscle.  相似文献   

17.
Purification and characterization of Ricinus communis invertase   总被引:3,自引:0,他引:3  
An invertase from Ricinus communis leaves was purified 4,400-fold. The preparation was homogeneous by criteria of gel electrophoresis, gel permeation, adsorption, and ionic exchange chromatography. One optimum pH at 3.5 was observed with crude invertase; however, purified preparations showed two optima, at pH 3.5 and 5.5. Addition of bovine serum albumin restored one maximum at pH 3.5 and elicited a 30% activation of the invertase. The effect was caused by many other proteins and by heparin, dextran sulfate, and polyvinylpyrrolidone. Fructose, fructose 1,6-diphosphate, maleic, trans-aconitic, malic, and ascorbic acids were simple competitive inhibitors of the purified enzyme. Glucose was a noncompetitive inhibitor. The activation by proteins suppressed these inhibitory effects. The minimum concentration of activator necessary to reach the maximal activation or "point of optimal activation" was always reached at a concentration of 1 X 10(-6) M, independently of the nature of the activator, when 8.6 X 10(-12) mol of enzyme were used. Apparent molecular weight determinations of the enzyme in the presence and absence of activator and molecular weight determinations based on determinations of the point of optimal activation suggested that the purified enzyme is a heptamer (Mr of 77,900, Stokes radius 32 A, frictional ration f/fo 1.1, partial specific volume 0.749 ml/g) and that the activated form is a trimer consisting of two enzyme subunits and one activator molecule. The activation was lost by dilution of the trimer. The enzyme subunit, as isolated by gel filtration in the presence of sodium dodecyl sulfate (Mr 11,000) was inactive but quickly regained activity upon removal of sodium dodecyl sulfate.  相似文献   

18.
The bifunctional P protein (chorismate mutase: prephenate dehydratase) from Acinetobacter calcoaceticus has been purified. It was homogeneous in polyacrylamide gels and was more than 95% pure on the basis of the immunostaining of purified P protein with the antibodies raised against the P protein. The native enzyme is a homodimer (Mr = 91,000) composed of 45-kDa subunits. A twofold increase in the native molecular mass of the P protein occurred in the presence of L-phenylalanine (inhibitor of both activities) or L-tyrosine (activator of the dehydratase activity) during gel filtration. Chorismate mutase activity followed Michaelis-Menten kinetics with a Km of 0.55 mM for chorismate. L-Phenylalanine was a relatively poor non-competitive inhibitor of the mutase activity. The chorismate mutase activity was also competitively inhibited by prephenate (reaction product). Substrate-saturation curves for the dehydratase activity were sigmoidal showing positive cooperativity among the prephenate-binding sites. L-Tyrosine activated prephenate dehydratase strongly but did not abolish positive cooperativity with respect to prephenate. L-Phenylalanine inhibited the dehydratase activity, and the substrate-saturation curves became increasingly sigmoidal as phenylalanine concentrations were increased with happ values changing from 2.0 (no phenylalanine) to 4.0 (0.08 mM L-phenylalanine). A sigmoidal inhibition curve of the dehydratase activity by L-phenylalanine gave Hill plots having a slope of -2.9. Higher ionic strength increased the dehydratase activity by reducing the positive cooperative binding of prephenate, and the sigmoidal substrate-saturation curves were changed to near-hyperbolic form. The happ values decreased with increase in ionic strength. Antibodies raised against the purified P protein showed cross-reactivity with the P proteins from near phylogenetic relatives of A. calcoaceticus. At a greater phylogenetic distance, cross-reaction was superior with P protein from Neisseria gonorrhoeae than with that from the more closely related Escherichia coli.  相似文献   

19.
A membrane-bound phosphatidylinositol (PI) kinase was purified from rat brain. The enzyme was solubilized with Triton X-100 from salt-washed membrane and purified 11,183-fold, with a final specific activity of 150 nmol/min/mg of protein. Purification steps included several chromatography using Q-Sepharose Fast Flow, cellulose phosphate, Toyopearl HW 55 and Affi-Gel Blue. The purified PI kinase had an estimated molecular weight of 80,000 by gel filtration and 76,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified kinase phosphorylated only PI and did not phosphorylate phosphatidylinositol 4-phosphate or diacylglycerol. Km values for PI and ATP were found to be 115 and 150 microM, respectively. The enzyme required Mg2+ (5-20 mM) or Mn2+ (1-2 mM) for activity, was stimulated by 0.1-1.0% (w/v) Triton X-100, and completely inhibited by 0.05% sodium dodecyl sulfate. The enzyme activity showed a broad pH optimum at around 7.4. The enzyme utilized ATP and not GTP as phosphate donor. Nucleoside triphosphates other than ATP and diphosphates significantly inhibited the kinase activity. However, inhibitory effects of adenosine, cAMP, and quercetin were weak.  相似文献   

20.
Two nuclear cAMP-independent protein kinases (designated PK-N1 and PK-N2) were purified from rat ventral-prostate and liver. The yield of enzyme units was 4-5% and 7-9% for each enzyme from the prostatic nuclei and liver nuclei, respectively. The average fold purification for prostatic nuclear protein kinase N1 and N2 was 1360 and 1833, respectively. The respective average specific activity of the two enzymes towards casein was 81,585 and 110,000 nmol 32P incorporated/hr/mg of enzyme. Protein kinase N1 comprised one polypeptide of Mr 35,000 which underwent phosphorylation in the presence of Mg2+ + ATP. Protein kinase N2 comprised two polypeptides Mr 40,000 and 30,000 of which only the Mr 30,000 polypeptide was autophosphorylated. Both enzymes were active towards casein, phosvitin, dephosphophosvitin, spermine-binding protein, and non-histone proteins in vitro. Little activity was detected towards histones. Both enzymes were stimulated by 150-200 mM NaCl. MgCl2 requirement varied with the protein substrate but was between 2-4 mM for both enzymes. With dephosphophosvitin as substrate, the apparent Km for ATP for N1 protein kinase was 0.01 mM. GTP did not replace ATP in this reaction. Protein kinase N2 was active in the presence of ATP or GTP. The apparent Km was 0.01 mM for ATP, but 0.1 mM for GTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号