首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Phosphate uptake kinetics and uptake rates were calculated for planktonic (phytoplankton and bacterioplankton) and benthic (epiphyton and epipelon) assemblages in a large, shallow, subtropical lake. Samples were taken bimonthly over the period of 1 year at three different sites to examine spatial and temporal variability in these processes. 2. Two of the sites, located at the edge of the littoral zone next to the open water (ecotone sites), had low irradiance at the sediment surface and high total phosphorus (TP) concentration (annual mean TP = 112 μg L–1). The third site, located in the littoral marsh zone, had high irradiance at the sediment surface and low TP concentration (annual mean TP = 7 μg L–1). 3. Based on 32P-PO4 turnover time, P availability varied temporally and spatially. At the two high TP ecotone sites, P concentration was lowest in July and August. At the low TP marsh site, P limited algal production throughout the year. 4. The quotient of maximum uptake rate to half saturation constant (Vm/Ks) in the plankton increased by over two orders of magnitude during the P-limited (summer) period at the two ecotone sites, suggesting that plankton used the scarce phosphorus more efficiently. The specific uptake rate of plankton was significantly greater than that of periphyton at all sites, suggesting that the plankton were more efficient than periphyton at taking up phosphate. 5. Periphyton biomass, as well as absolute and percentage P uptake rate, was greater at the marsh site than at the ecotone sites, despite the lower P concentrations in the marsh. This was probably a result of rapid nutrient cycling, combined with high light availability in the marsh.  相似文献   

2.
In shallow temperate lakes many ecological processes depend on submerged macrophytes. In subtropical and tropical lakes, free-floating macrophytes may be equally or more important. We tested the hypothesis that different macrophyte growth forms would be linked with different bottom-up and top-down mechanisms in out-competing phytoplankton. We compared experimentally the effects of submerged and free-floating plants on water chemistry, phytoplankton biomass, zooplankton and fish community structure in a shallow hypertrophic lake (Lake Rodó, 34°55S 56°10W, Uruguay). Except for the retention of suspended solids, we found no other significant bottom-up process connected with either Eichhornia crassipes or Potamogeton pectinatus. Free-floating plants had a lower abundance of medium-sized zooplankton than any other microhabitat and submerged plants were apparently preferred by microcrustaceans. Fish showed a differential habitat use according to species, size-class and feeding habits. Dominant omnivore-planktivores, particularly the smallest size classes, preferred submerged plants. In contrast, omnivore-piscivores were significantly associated with free-floating plants. The density of omnivorous-planktivorous fish, by size class, significantly explained the distribution of medium-sized zooplankton, the high number of size 0 fish being the main factor. The abiotic environment and the structure of the zooplankton community explained little of the fish distribution pattern. Our results suggest that bottom-up effects of free-floating plants are weak when cover is low or intermediate. Top-down effects are complex, as effects on zooplankton and fish communities seem contradictory. The low piscivores:planktivores ratio in all microhabitats suggests, however, that cascading effects on phytoplankton through free-floating plant impacts on piscivorous fish are unlikely to be strong.  相似文献   

3.
Response of a eutrophic, shallow subtropical lake to reduced nutrient loading   总被引:10,自引:1,他引:10  
1. Lake Apopka (FL, U.S.A.) was subjected to decades of high nutrient loading from farms developed in the 1940s on converted riparian wetlands. Consequences included perennially high densities of cyanobacteria, low water transparency, elimination of submerged vegetation, modified fish community, and deposition of nutrient‐rich, flocculent sediments. 2. Initial steps were taken to reduce phosphorus (P) loading. Through strengthened regulation and purchase of farms for restoration, external P loading was reduced on average from 0.56 to 0.25 g P m?2 year?1 (55%) starting in 1993. The P loading target for the lake is 0.13 g P m?2 year?1. 3. For the first 6 years of P loading reduction the annual sedimentation coefficient (σ) averaged 13% less than the prior long‐term value (0.97 versus 1.11 year?1). The sedimentation coefficient, σ, was lower in the last 3 years of the study, but this period included extreme low‐water conditions and may not be representative. Annual σ was negative (net P flux to the water column) only 1 year. 4. Wind velocity explained 43% of the variation in σ during the period before reductions in total phosphorus (TP) concentration of lake water, but this proportion dropped to 6% after TP reductions. 5. Annual mean TP concentrations differed considerably from values predicted from external loading and hydraulic retention time using the Vollenweider–Organization for Economic Co‐operation and Development relationship. Reductions in lake water TP concentration fit model predictions better when multiyear (3‐year) mean values were used. 6. Evidence available to date indicates that this shallow, eutrophic lake responded to the decrease in external P loading. Neither recycling of sediment P nor wind‐driven resuspension of sediments prevented improvements in water quality. Reductions in TP concentration were evident about two TP‐resident times (2 × 0.9 year) after programmes began to reduce P loading. Improvements in concentrations of chlorophyll a and total suspended solids as well as in Secchi transparency lagged changes in lake‐water TP concentration but reached similar magnitudes during the study.  相似文献   

4.
5.
Experiments were performed in situ in shallow, subtropical LakeOkeechobee (Florida. USA) to quantify and compare the responsesof phytoplanklon (in 20 I clear polycarbonate carboys) and periphyton(on nutrient-diffusing clay substrates) to additions of nitrogenand/or phosphorus. During early and late summer. 1994, bothassemblages were nitrogen limited or co-limited by nitrogenand phosphorus, indicating the potential for competition betweenbenthic and planktonic communities. During late summer, therewas evidence that high phytoplankton biomass reduced light penetrationthrough the water column and may have suppressed periphytongrowth. The similar phytoplankton and periphyton taxonomic structures,both dominated by Lyngbya sp. and pennate diatoms, suggestedthat in shallow regions of this lake, resuspended meroplanktonmight account for a large portion of phytoplankton biomass.This phenomenon has been observed in other shallow, wind-drivenFlorida lakes.  相似文献   

6.
The seasonal changes in phytoplankton biomass and species diversity in a shallow, eutrophic Danish lake are described and related to different disturbance events acting on the phytoplankton community.Both the spring diatom maximum and the summer bloom of the filamentous blue-green alga, Aphanizomenon flos-aquae (L.) Ralfs, coincided with low values of phytoplankton species diversity and equitability. Diatom collapse was mainly due to internal modifications as nutrient depletion (Si, P) caused by rapid growth of phytoplankton, and increased grazing activity from zooplankton. A large population of Daphnia longispina O.F. Müller in June effectively removed smaller algal competitors, thus favouring the development of a huge summer bloom (140 mm3 l–1) of Aphanizomenon flos-aquae. Heavy rainfall and storms in late July increased the loss of Apahnizomenon by out-flow and disturbed the stratification of the lake. These events caused a marked decline in phytoplankton biomass but had no effect on species diversity. A second storm period in late August circulated the lake completely and was followed by a rapid increase in phytoplankton diversity, and a change in the phytoplankton community structure from dominance of large, slow-growing K-selected species (Aphanizomenon) to small, fast-growing r-selected species (cryptomonads).  相似文献   

7.
Nõges  Tiina  Nõges  Peeter  Laugaste  Reet 《Hydrobiologia》2003,506(1-3):257-263
Hydrobiologia - We studied the effect of water level changes in Lake Võrtsjärv (270 km2, mean depth 2.8 m) on the abundance and composition of phytoplankton based on a 35-year database....  相似文献   

8.
Nitrate availability and hydrophyte species richness in shallow lakes   总被引:4,自引:0,他引:4  
1. Submerged plant richness is a key element in determining the ecological quality of freshwater systems; it has often been reduced or completely lost. 2. The submerged and floating‐leaved macrophyte communities of 60 shallow lakes in Poland and the U.K. have been surveyed and species richness related to environmental factors by general linearised models. 3. Nitrogen, and more specifically winter nitrate, concentrations were most important in explaining species richness with which they were inversely correlated. Phosphorus was subsidiary. Such an inverse relationship is consistent with findings in terrestrial communities. Polish lakes, with less intensively farmed catchments, had greater richness than the U.K. lakes. 4. The richest U.K. communities were associated with winter nitrate‐N concentrations of up to about 1–2 mg L?1 and may correspond with ‘good’ ecological quality under the terms of the European Water Framework Directive. Current concentrations in European lowlands are often much higher.  相似文献   

9.
Disturbances caused by rainfall are common in streams with the impact on stream inhabitants determined by the frequency, intensity, and predictability of the event. Here, we examine the response of winter-emerging Chironomidae (Diptera) to extreme flooding disturbance. In August of 2007, a severe flood impacted southeastern Minnesota, imparting stress on aquatic communities. Chironomid pupal exuviae collections were obtained biweekly from 18 southeast Minnesota streams during the following winter to assess resistance and resilience of winter-active chironomids to flooding. Streams examined were divided into moderate (2.5–10 cm), heavy (10–20 cm), or extreme (20+ cm) rainfall categories with rainfall amounts in each category representing total precipitation during the 3-day storm. Post-flood samples were compared to samples obtained from the same localities during prior winters. Our findings contradict studies of responses by Chironomidae to flooding during warmer-water conditions and show that winter-emerging Chironomidae are resistant to stress imposed by summer spates. Significantly more taxa emerged during winter after flooding as compared to historic collections, and the number of species emerging in winter was positively correlated with rainfall severity, indicating that 15 species responded opportunistically to disturbance. This indicates that winter-active Chironomidae may be resistant to increased severity of summer spates associated with climate change predictions.  相似文献   

10.
The role of light and nutrient availability in controlling theabundance and structure of phytoplankton populations was studiedin Lake Okeechobee, a large eutrophic lake in south florida,USA. Measurement of selected environmental parameters at samplingsites within four ecologically distinct regions of the lakewere combined with direct experimental determinations of limitinglevels of light and nutrients for phytoplankton growth to determinespatial and temporal variations in the relative roles of theselimiting factors. Estimated mean light availability in the mixedlayer, Im, was significantly lower in the turbid central regionof the lake than in other regions. Correlations between Im andphytoplankton standing crops led to the conclusion that lowlight availability in the central region of the lake, and toa lesser extent in other areas, restricts phytoplankton standingcrops to levels below the potential provided by the nutrientsavailable. The results of the irradiance-growth experimentsconfirmed the conclusions of the correlation analyses that phytoplanktongrowth is restricted by the levels of light availability experiencedduring the winter and spring in the central region of the lake.Bioassays indicated that nitrogen was the most frequently limitingnutrient for phytoplankton growth. High rates of nitrogen fixationwere frequently observed in the lake, along with correspondinglyhigh abundances of nitrogen-fixing cyanobacteria and nitrogenfixation activity. Elevated concentrations of soluble inorganicnitrogen appeared to suppress both nitrogen fixation and therelative abundance of nitrogen-fixing cyanobacteria.  相似文献   

11.
  • 1 The interannual variability of the dominant phytoplankton populations is described in a subtropical reservoir in Queensland using weekly data for a 16-year period between 1978 and 1994. North Pine Dam, Brisbane, is in an area characterized by strong interannual variability in rainfall. This variability is linked to El Nino Southern Oscillation (ENSO) events. Between 1978 and 1994 periods of drought (during strong ENSO events) were interspersed by periods of flooding rains. Rainfall on the catchment and temperature and oxygen within the dam showed strong 40-day periodicities which also varied in strength interannually in response to ENSO events. Similar patterns of fluctuations in the 40-day periodicity have been found elsewhere in SE Australia. Seasonal cycles of stratification in the dam were a function of both hydrographic and hydrological events. Intermittent rain storms caused partial turnovers and large outflows. As much as 90% of the dam volume was exchanged in a single flood event.
  • 2 The dominant phytoplankton species were similar to those frequently found in tropical and subtropical lakes and reservoirs. The phytoplankton community switched between cyanobacterial blooms (Cylindrospermopsis, Microcystis) during drought and falling water levels and diatom blooms (Aulacoseira) in response to inflows and seasonal turnovers. There appeared to be a subtle interaction between inflows, water column stability, the periodic overturns and the occurrence of the dominant species. All the dominant species showed long periods (2–4 years) of exponential increase or decrease superimposed on top of the seasonal fluctuations in abundance. These patterns of abundance led to marked interannual variability in the phytoplankton biomass. Climate variability had a major impact on the seasonal and interannual changes of the dominant phytoplankton species.
  • 3 Phytoplankton biomass tended to be depressed for about 3 months after individual storm events but the data also displayed long-term lag effects (2–4 years) which destroyed any significant correlation between water residence time and biomass. Summer maxima of biomass dominated by cyanobacteria disappeared between 1985 and 1990 and were replaced by smaller winter peaks. The data presented here are not capable of unequivocally identifying the precise reason for these longer-term effects. Because of the implications for water quality management in subtropical and tropical reservoirs they warrant further study.
  相似文献   

12.
The generation time of the predatory cyclopoid copepod Acanthocyclops robustus was estimated on 11 occasions during the years 1980 to 1982 in Alderfen Broad. In a multiple regression model, generation time was found to be uncorrelated with temperature, positively correlated (p < 0.05) with the densities of Bosmina longirostris and rotifers, and negatively correlated (p < 0.001) with the density of nauplii of the calanoid copepod Eudiaptomus gracilis. It is suggested that generation time was determined largely by the availability of calanoid nauplii as prey, even though these constituted only 2% of zooplankton standing biomass.  相似文献   

13.
14.
Kinetic studies of copper-induced LDL peroxidation commonly assume that the availability of molecular oxygen in the reaction media is not a limiting factor. The present study reveals that this assumption is valid only at low LDL concentrations. At high LDL concentrations, accumulation of oxidation products, as monitored spectroscopically under conditions of various oxygen concentrations in the medium, comes to a halt when the oxygen concentration in the solution, as measured by an oxygen electrode, decreases to near zero levels. Bubbling of the oxygen into the solution results in resumption of peroxidation. These results are important with respect to the ex vivo assaying of lipoprotein peroxidation because many previous studies have been conducted with LDL concentrations that corresponded to polyunsaturated fatty acid concentrations in access of the concentration of molecular oxygen. The possible pathophysiological significance of the results of this study has yet to be evaluated.  相似文献   

15.
Colacium vesiculosum (Euglenophyceae) is an epibiont common on planktonic microcrustaceans of continental waters. The interaction between epibionts and substrate organisms is not very well known, particularly in subtropical environments of South America. In the present work, we analyzed the prevalence, density, biomass and attachment sites of C. vesiculosum on planktonic microcrustaceans from Paiva Lake, a subtropical lake of Argentina. With the aim to evaluate whether epibionts affect the filtering rates of Notodiaptomus spiniger, the dominant planktonic crustacean, we carried out bioassays using phytoplankton < 53 microm. Crustaceans were sampled using a PVC tube (1.2m long and 10cm in diameter), filtering 50L of water through a 53 microm-mesh. Microcrustaceans were counted in Bogorov chambers under a stereoscopic microscope. The infested organisms were separated and observed with a photonic microscope to determine density and biovolume of epibionts, by analyzing their distribution on the exoskeleton. The prevalence of C. vesiculosum was higher in adult crustaceans than in their larvae and juveniles. The most infested group was that of calanoid copepods, related to their high density. The attachment sites on the exoskeleton were found to be the portions of the body which have a higher probability of encounter with epibionts during locomotion and feeding, i.e., antennae and thoracic legs in copepods, and thoracic legs and postabdomen in cladocerans. The similar values found in the filtering rate of infested and uninfested individuals of N. spiniger and the constant prevalence (< 40%) of epibiont algae, suggest that C. vesiculosum does not condition the life of planktonic crustaceans of Paiva Lake.  相似文献   

16.
1. According to stoichiometric theory, zooplankters have a species‐specific elemental composition. Daphniids have a relatively high phosphorus concentration in their tissues and copepods high nitrogen. Daphniids should, therefore, be more sensitive to phosphorus limitation and copepods more sensitive to nitrogen. A 2‐year study of a shallow marl lake in the west of Ireland investigated whether population fluctuations of the two dominant taxa, Daphnia spp. and the calanoid Eudiaptomus gracilis, were associated with the availability of phosphorus and nitrogen. 2. In accordance with stoichiometric predictions, Daphnia and Eudiaptomus reproduction had contrasting relationships with dietary phosphorus and nitrogen availability. Egg production by Daphnia was negatively associated with the ratio of dissolved inorganic nitrogen (DIN) : total phosphorus (TP) and the ratio of light to TP which was used as an indirect index for seston carbon (C) : phosphorus (P). Conversely calanoid egg production had a positive relationship with the DIN : TP ratio and was unrelated to the estimated C : P (light : TP) ratio. 3. Daphnia biomass was not, however, correlated with phosphorus availability, and neither was calanoid biomass correlated with nitrogen. The high ratio of DIN : TP when Daphnia dominated the zooplankton biomass and the low ratio when calanoids dominated, is consistent with Daphnia acting as a sink for phosphorus and calanoids as a sink for nitrogen and suggests consumer‐driven nutrient recycling.  相似文献   

17.
Resuspension of inorganic sediments in a very shallow Swedish lake is studied using settling sediment traps and measurements of suspended matter. Theoretical aspects of resuspension dynamics is discussed emphasizing special shallow lake aspects. Bottom shear stress distribution is computed for different wind conditions.  相似文献   

18.
19.
The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
In shallow aquatic systems, the majority of organic matter mineralization occurs in the sediments. Several factors including temperature control mineralization rates, however, the underlying causes of the effects are not well understood in subtropical lakes. In this study, we determined the influence of temperature on organic matter degradation by taking sediments from four sites in a subtropical large shallow freshwater lake, and monitoring organic matter composition and enzymes in microcosm experiments at five temperatures from 5 to 40°C. Following a three-month incubation, it was found that the mineralization of submerged plants in sediments was strongly influenced by temperature. Removal efficiency of total organic carbon in sediments ranged from 4.3 to 22.6% at 5°C, and reached 46.7–55.5% at 40°C. In addition, the removal efficiency of organic matter and the relative recalcitrant carbon decomposition depended on sediment type. For sediments in the site located in the lake center, recalcitrant and labile carbon decomposition had equivalent responses to the different temperatures. For sediments with dominance of submerged macrophytes, the humic acids were low even at high temperature. Thus, the annual deposition of plant litter in sediments favored organic carbon decomposition rather than humification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号