首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of articular cartilage is to support and distribute loads and to provide lubrication in the diarthrodial joints. Cartilage function is described by proper mechanical and rheological properties, strain and depth-dependent, which are not completely assessed. Unconfined and confined compression are commonly used to evaluate the Young's modulus (E) and the aggregate modulus (H(A)), respectively. The Poisson's ratio (nu) can be calculated indirectly from the equilibrium compression data, or using the biphasic indentation technique; it has recently been optically evaluated by using video microscopy during unconfined compression. The transient response of articular cartilage during confined compression depends on its permeability k; a constant value of k can be easily identified by a simple analytical model of confined compression tests, whereas more complex models or direct measurements (permeation tests) are needed to study the permeability dependence on deformation. A poroelastic finite element model of articular cartilage was developed for this purpose. The elastic parameters (E,nu) of the model were evaluated performing unconfined compression creep tests on human articular cartilage disks, whereas k was identified from the confined test response. Our combined experimental and computational method can be used to identify the parameters that define the permeability dependence on deformation, as a function of depth from articular surface.  相似文献   

2.
The normal amount of DNA in human diploid nuclei was determined by the use of the Feulgen reaction measured by microdensitometry. The DNA-content of nuclei in normal human articular cartilage was determined in nuclei of zones 3 and 4 of cartilage of the femoral head removed from osteoporotic fractured necks of femur. Analysis of the results indicated that a degree of synthesis of DNA occurred even in these zones of very elderly persons. Results on these zones in the articular cartilage of osteoarthritic joints indicated that different populations occurred. In some there was DNA-synthesis related to tetraploidy; in others, the DNA was very stable to acid hydrolysis with no sign of biosynthetic activity; in the last group, which contained erosions of the superficial zones, the DNA was unstable to hydrolysis.  相似文献   

3.
Notch pathway plays a pivotal role in cell fate determination. There is much interest surrounding its therapeutic potential, in osteoarthritis, but the expression profile of Notch-related molecules, as well as their relation with cartilage pathological parameters, remains unclear. The purpose of our study is to analyze the expression pattern of Notch family members, type II and type I collagen, in normal (healthy) and osteoarthritic human knee cartilage. Osteoarthritic cartilages were obtained from 3 patients undergoing a total knee replacement. Macroscopically normal cartilage was dissected from 3 human knees at the time of autopsy or surgery. Immunohistochemical staining was performed using Notch1,2,3 and 4, Delta, Jagged, type II collagen and type I collagen antibodies. In healthy cartilage, type II collagen was abundantly expressed while type I was absent. This latter increased proportionally to the osteoarthritic grade. Type II collagen expression remained intense in osteoarthritic cartilage. In healthy cartilage as well as in cartilage with minor lesions, Notch family member's proteins were not or just weakly expressed at the surface and in the cells. However, Notch molecules were over-expressed in osteoarthritic cartilage compared to healthy one. This expression pattern was different according to the cartilage zone and the severity of OA. Our data suggest that Notch signaling is activated in osteoarthritic cartilage, compared to healthy cartilage, with a much more abundant expression in the most damaged areas.  相似文献   

4.
Tensile fatigue of human articular cartilage.   总被引:6,自引:0,他引:6  
  相似文献   

5.
Changes in external osmolarity arise from variations in mechanical loads on joints and may affect the homeostasis of chondrocytes, which are the only cell type responsible for matrix turnover. Accordingly, variations in membrane potential may affect cartilage production. The present study assessed the effects of variations in external osmolarity on membrane potential and the possible mechanisms responsible for this response. Membrane potential was measured by the patch clamp whole-cell technique using human articular chondrocytes freshly isolated from healthy and osteoarthritic cartilage. The membrane potential was -39±4 mV in articular human chondrocytes from healthy cartilage and -26±4 mV in those from osteoarthritic cartilage. Increasing the osmolarity produced a reversible hyperpolarization mediated by K+ efflux through BKCa channels in both groups of chondrocytes, but the response in osteoarthritic cells was significantly reduced; no other K+ pathways were involved in this effect. Alternatively, decreasing the osmolarity elicited depolarization in healthy chondrocytes but did not produce any response in chondrocytes from osteoarthritic cartilage. The depolarization was dependent on Na+ influx through Gd3+-sensitive stretch-activated cation channels and was independent of external Ca2+. The differential responses observed in chondrocytes from osteoarthritic cartilage suggest that disregulation on the responses to external osmolarity may be involved in the process that leads to the alterations in the cartilage structure observed in osteoarthritis.  相似文献   

6.
The purpose of this study was to explore the triphasic mechanical properties of osteoarthritic cartilage with different pathological grades. First, samples of cartilage from rabbits with different stages of osteoarthritis (OA) were graded. Following this, the cartilage was strained by a swelling experiment, and changes were measured using a high-frequency ultrasound system. The result, together with fixed charge density and water volume fraction of cartilage samples, was used to estimate the uniaxial modulus of the cartilage tissue, based on a triphasic model. For the control cartilage samples, the uniaxial elastic modulus on the cartilage surface was lower than those in the middle and deep layers. With an increase in the OA grade, the uniaxial elastic modulus of the surface, middle and deep layers decreased. A significant difference was found in the surface elastic modulus of different OA grades (P<0.01), while no significant differences were identified for OA cartilages of Grades 1 and 2 in the middle and deep layers (P<0.01). Compared with Grades 1 and 2, there was a significant reduction in the elastic modulus in the middle and deep layers of Grade 3 OA cartilage (P<0.05). Overall, this study may provide a new quantitative method to evaluate the severity of OA using the mechanical properties of cartilage tissue.  相似文献   

7.
A large non-collagenous protein was extracted from degenerated cartilage of osteoarthritic canine joints. Evidence was presented that this protein is fibronectin. It had a molecular weight identical to that of fibronectin isolated from canine serum, required the presence of heparin and urea in the extraction buffer for solubilization, reacted with both polyclonal and monoclonal antibodies to fibronectin in an enzyme-linked immunosorbent assay (ELISA), and exhibited gelatin binding properties. Fibronectin was detected in normal cartilage as well, although in lesser amounts than observed in osteoarthritic cartilage.  相似文献   

8.
Six glycosyltransferases (mannosyl-, glucosyl-, N-acetyl-glucosaminyl-, galactosyl-, sialyl- and fucosyltransferases) are studied and characterized for their optimal conditions and their relations with interfering reactions (glycosyl-nucleotide pyrophosphatases, glycosidases and proteinases) in chondrocytes from osteoarthritic and normal human articular cartilage. Osteoarthritis induces increased activities for five glycosyl-transferases. The observed modifications are not explained by alterations in physico-chemical parameters of the enzymes or by intervention of glycosyl-nucleotide pyrophosphatases, glycosidases or proteolytic enzymes.  相似文献   

9.
Articular cartilage degeneration seen in osteoarthritis is primarily the consequence of events within the articular cartilage that leads to the production of proteases by chondrocytes. 22 osteoarthritic cartilage specimens were obtained from patients with primary osteoarthritis (46–81 years) undergoing total knee replacement. 12 age-matched (41–86 years) and 16 young (16–40 years) non-osteoarthritic control cartilage specimens were obtained from the cadavers in the department of Anatomy and from patients undergoing lower limb amputation in Trauma center of PGIMER, Chandigarh. 5 μ thick paraffin sections were stained for osteocalcin, osteopontin, osteonectin and alkaline phosphatase to analyze their expression in hypertrophied chondrocytes and osteoarthritic cartilage matrix and to compare the staining intensity with that of normal ageing articular cartilage. Immunohistochemical staining of tissue sections revealed moderate to strong cytoplasmic staining for all four stains in all the specimens of the osteoarthritic group compared to age-matched control. The immunohistochemical scores were significantly higher in the osteoarthritic group for all four stains. The features of the osteoarthritic articular cartilage were markedly different from the non-osteoarthritic age-matched articular cartilage suggesting that osteoarthritis is not an inevitable feature of aging.  相似文献   

10.
Viscoelastic properties of human articular cartilage   总被引:6,自引:0,他引:6  
  相似文献   

11.
Bellucci G  Seedhom BB 《Biorheology》2002,39(1-2):193-199
Although fatigue has been implicated in cartilage failure there are only two studies by the same author, and in both of which cartilage was tested in the direction parallel to the collagen orientation in the surface layer. In the present work articular cartilage was tested also along the perpendicular direction, being the direction in which cartilage possesses lower tensile strength.Specimens were tested under cyclic tensile load. Number of cycles at failure was recorded as well as elongation of the specimen. To date 72 specimens have been tested all from one knee joint.The number of cycles to failure ranged between two and 1.5 million. The surface and deep layers have better fatigue properties whether tested in the parallel or the perpendicular direction, while the middle layer was far weaker. Better fatigue behaviour was observed with specimens tested in parallel than in perpendicular direction to the fibres.  相似文献   

12.
The content and the biosynthesis of fibronectin was examined in disease-free articular cartilage and in articular cartilage from osteoarthritic canine joints. Fibronectin content was increased in extracts of cartilage from osteoarthritic joints. Incubation of cartilage in vitro with [3H]phenylalanine and subsequent isolation of [3H]fibronectin from a gelatin affinity column and characterization by SDS-polyacrylamide gel electrophoresis and by immunoprecipitation indicated that disease-free and osteoarthritic cartilage explants synthesized fibronectin. About 50% of the [3H]fibronectin was recovered in the incubation medium. The osteoarthritic cartilage synthesized and accumulated up to 5-fold more [3H]fibronectin than disease-free cartilage.  相似文献   

13.

Introduction

Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage.

Methods

We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients.

Results

Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages.

Conclusions

CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.  相似文献   

14.
Mechanical stimulation is critically important for the maintenance of normal articular cartilage integrity. Molecular events regulating responses of chondrocytes to mechanical forces are beginning to be defined. Chondrocytes from normal human knee joint articular cartilage show increased levels of aggrecan mRNA following 0.33 Hz mechanical stimulation whilst at the same time relative levels of MMP3 mRNA are decreased. This anabolic response, associated with membrane hyperpolarisation, is activated via an integrin-dependent interleukin (IL)-4 autocrine/paracrine loop. Work in our laboratory suggests that this chondroprotective response may be aberrant in osteoarthritis (OA). Chondrocytes from OA cartilage show no changes in aggrecan or MMP3 mRNA following 0.33 Hz mechanical stimulation. alpha5beta1 integrin is the mechanoreceptor in both normal and OA chondrocytes but downstream signalling pathways differ. OA chondrocytes show membrane depolarisation following 0.33 Hz mechanical stimulation consequent to activation of an IL1beta autocrine/paracrine loop. IL4 signalling in OA chondrocytes is preferentially through the type I (IL4alpha/cgamma) receptor rather than via the type II (IL4alpha/IL13R) receptor. Altered mechanotransduction and signalling in OA may contribute to changes in chondrocyte behaviour leading to increased cartilage breakdown and disease progression.  相似文献   

15.

Background  

Assessment of gene expression is an important component of osteoarthritis (OA) research, greatly improved by the development of quantitative real-time PCR (qPCR). This technique requires normalization for precise results, yet no suitable reference genes have been identified in human articular cartilage. We have examined ten well-known reference genes to determine the most adequate for this application.  相似文献   

16.
Accurate characterisation of the mechanical properties of human atherosclerotic plaque is important for our understanding of the role of vascular mechanics in the development and treatment of atherosclerosis. The majority of previous studies investigating the mechanical properties of human plaque are based on tests of plaque tissue removed following autopsy. This study aims to characterise the mechanical behaviour of fresh human carotid plaques removed during endarterectomy and tested within 2 h. A total of 50 radial compressive and 17 circumferential tensile uniaxial tests were performed on samples taken from 14 carotid plaques. The clinical classification of each plaque, as determined by duplex ultrasound is also reported. Plaques were classified as calcified, mixed or echolucent. Experimental data indicated that plaques were highly inhomogeneous; with variations seen in the mechanical properties of plaque obtained from individual donors and between donors. The mean behaviour of samples for each classification indicated that calcified plaques had the stiffest response, while echolucent plaques were the least stiff. Results also indicated that there may be a difference in behaviour of samples taken from different anatomical locations (common, internal and external carotid), however the large variability indicates that more testing is needed to reach significant conclusions. This work represents a step towards a better understanding of the in vivo mechanical behaviour of human atherosclerotic plaque.  相似文献   

17.
The effects of proteoglycan and collagen digestion on the transient response of human articular cartilage when tested in unconfined compression were determined. Small cylindrical specimens of cartilage, isolated from the femoral head of the hip joint and from the femoral condyles of the knee joint, were subjected to a suddenly applied compressive load using a test apparatus designed to yield a transient oscillatory response. From this response values of the elastic stiffness and the viscous damping coefficient were determined. Cathepsin D and cathepsin B1 were used to digest the proteoglycan in some specimens, while in other specimens leukocyte elastase was used to attack the non-helical terminal regions of the Type II tropocollagen molecules and possibly the Type IX collagen molecule and thereby disturb the integrity of the collagen mesh. The results showed that proteoglycan digestion alone reduced the viscous damping coefficient but it did not significantly alter the elastic stiffness as determined from the oscillatory response. In contrast, the action of elastase reduced both the damping coefficient and the elastic stiffness of the cartilage. The results demonstrated the role of proteoglycans in regulating fluid transport in cartilage and hence controlling the time-dependent viscous properties. The elastic stiffness was shown to be dependent on the integrity of the collagen fibre network and not on the proteoglycans.  相似文献   

18.
The negatively charged proteoglycans (PG) provide compressive resistance to articular cartilage by means of their fixed charge density (FCD) and high osmotic pressure (πPG), and the collagen network (CN) provides the restraining forces to counterbalance πPG. Our objectives in this work were to: 1), account for collagen intrafibrillar water when transforming biochemical measurements into a FCD-πPG relationship; 2), compute πPG and CN contributions to the compressive behavior of full-thickness cartilage during bovine growth (fetal, calf, and adult) and human adult aging (young and old); and 3), predict the effect of depth from the articular surface on πPG in human aging. Extrafibrillar FCD (FCDEF) and πPG increased with bovine growth due to an increase in CN concentration, whereas PG concentration was steady. This maturation-related increase was amplified by compression. With normal human aging, FCDEF and πPG decreased. The πPG-values were close to equilibrium stress (σEQ) in all bovine and young human cartilage, but were only approximately half of σEQ in old human cartilage. Depth-related variations in the strain, FCDEF, πPG, and CN stress profiles in human cartilage suggested a functional deterioration of the superficial layer with aging. These results suggest the utility of the FCD-πPG relationship for elucidating the contribution of matrix macromolecules to the biomechanical properties of cartilage.  相似文献   

19.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

20.
We have previously described several receptors on the chondrocyte membrane. In an attempt to further characterize the coupling mechanisms of serotoninergic receptors, here we examined the involvement of serotonin in the phospholipase A2 activity. Serotonin dose-dependently stimulated phospholipase A2. This activation enhanced collagenase type II activity and had no effect on proteoglycanase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号