首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
African swine fever virus (ASFV) is a large enveloped DNA virus that shares the striking icosahedral symmetry of iridoviruses. To understand the mechanism of assembly of ASFV, we have been studying the biosynthesis and subcellular distribution of p73, the major structural protein of ASFV. Sucrose density sedimentation of lysates prepared from infected cells showed that newly synthesized p73 was incorporated into a complex with a size of 150 to 250 kDa. p73 synthesized by in vitro translation migrated at 70 kDa, suggesting that cellular and/or viral proteins are required for the formation of the 150- to 250-kDa complex. During a 2-h chase, approximately 50% of the newly synthesized pool of p73 bound to the endoplasmic reticulum (ER). During this period, the membrane-bound pool of p73, but not the cytosolic pool, formed large complexes of approximately 50,000 kDa. The complexes were formed via assembly intermediates, and the entire membrane-associated pool of p73 was incorporated into the 50,000-kDa complex within 2 h. The 50,000-kDa complexes containing p73 were also detected in virions secreted from cells. Immunoprecipitation of sucrose gradients with sera taken from hyperimmune pigs suggested that p73 was the major component of the 50,000-kDa complex. It is possible, therefore, that the complex contains between 600 and 700 copies of p73. The kinetics of complex formation and envelopment of p73 were similar, and complex formation and envelopment were both reversibly inhibited by cycloheximide, suggesting a functional link between complex assembly and ASFV envelopment. A protease protection assay detected 50,000-kDa complexes on the inside and outside of the membranes forming the viral envelope. The identification of a complex containing p73 beneath the envelope of ASFV suggests that p73 may be a component of the inner core shell or matrix of ASFV. The outer pool may represent p73 within the outer capsid layer of the virus. In summary, the data suggest that the assembly of the inner core matrix and outer capsid of ASFV takes place on the ER membrane during envelopment and that these structures are not preassembled in the cytosol.  相似文献   

2.
African swine fever virus (ASFV) protein pB602L has been described as a molecular chaperone for the correct folding of the major capsid protein p72. We have studied the function of protein pB602L during the viral assembly process by using a recombinant ASFV, vB602Li, which inducibly expresses the gene coding for this protein. We show that protein pB602L is a late nonstructural protein, which, in contrast with protein p72, is excluded from the viral factory. Repression of protein pB602L synthesis inhibits the proteolytic processing of the two viral polyproteins pp220 and pp62 and leads to a decrease in the levels of protein p72 and a delocalization of the capsid protein pE120R. As shown by electron microscopy analysis of cells infected with the recombinant virus vB602Li, the viral assembly process is severely altered in the absence of protein pB602L, with the generation of aberrant "zipper-like" structures instead of icosahedral virus particles. These "zipper-like" structures are similar to those found in cells infected under restrictive conditions with the recombinant virus vA72 inducibly expressing protein p72. Immunoelectron microscopy studies show that the abnormal forms generated in the absence of protein pB602L contain the inner envelope protein p17 and the two polyproteins but lack the capsid proteins p72 and pE120R. These findings indicate that protein pB602L is essential for the assembly of the icosahedral capsid of the virus particle.  相似文献   

3.
Protein folding in vivo: the importance of molecular chaperones   总被引:13,自引:0,他引:13  
The contribution of the two major cytosolic chaperone systems, Hsp70 and the cylindrical chaperonins, to cellular protein folding has been clarified by a number of recent papers. These studies found that, in vivo, a significant fraction of newly synthesized polypeptides transit through these chaperone systems in both prokaryotic and eukaryotic cells. The identification and characterization of the cellular substrates of chaperones will be instrumental in understanding how proteins fold in vivo.  相似文献   

4.
An antiserum was raised against the African swine fever virus (ASFV)-encoded ubiquitin-conjugating enzyme (UBCv1) and used to demonstrate by Western blotting (immunoblotting) and immunofluorescence that the enzyme is present in purified extracellular virions, is expressed both early and late after infection of cells with ASFV, and is cytoplasmically located. Antiubiquitin serum was used to identify novel ubiquitin conjugates present during ASFV infections. This antiserum stained virus factories late after infection, suggesting that virion proteins may be ubiquitinated. This possibility was confirmed by Western blotting, which identified three major antiubiquitin-immunoreactive proteins with molecular masses of 5, 18, and 58 kDa in purified extracellular virions. The 18-kDa protein was solubilized from virions at relatively low concentrations of the detergent n-octyl-beta-D-glucopyranoside, indicating that it is externally located and is possibly in the virus capsid. The 18-kDa protein was purified, and N-terminal amino acid sequencing confirmed that the protein was ubiquitinated and was ASFV encoded. The ASFV gene encoding this protein (PIG1) was sequenced, and the encoded protein expressed in an Escherichia coli expression vector. Recombinant PIG1 was ubiquitinated in the presence of E. coli expressed UBCv1 in vitro. These results suggest that PIG1 may be a substrate for UBCv1. The predicted molecular masses of the PIG1 protein and recombinant ubiquitinated protein were larger than the 18-kDa molecular mass of the ubiquitinated protein present in virions. Therefore, during viral replication, a precursor protein may undergo limited proteolysis to generate the ubiquitinated 18-kDa protein.  相似文献   

5.
Members of the heat-shock protein (hsp) 70 family, distributed within various cellular compartments, have been implicated in facilitating protein maturation events. In particular, related hsp 70 family members appear to bind nascent polypeptides which are in the course of synthesis and/or translocation into organelles. We previously reported that in normal, unstressed cells, cytosolic hsp 70 (hsp 72/73) interacted transiently with nascent polypeptides. We suspect that such interactions function to prevent or slow down the folding of the nascent polypeptide chain. Once synthesis is complete, and now with all of the information for folding present, the newly synthesized protein appears to commence along its folding pathway, accompanied by the ATP-dependent release of hsp 72/73. Herein, we examined how these events occur in cells subjected to different types of metabolic stress. In cells exposed to either an amino acid analog or sodium arsenite, two potent inducers of the stress response, newly synthesized proteins bind to but are not released from hsp 70. Under these conditions of metabolic stress, we suspect that the newly synthesized proteins are unable to commence proper folding and consequently remain bound to their hsp 70 chaperone. In cells subjected to heat shock, a large number of both newly synthesized as well as mature proteins are rendered insoluble. Within this insoluble material are appreciable amounts of hsp 72/73. Finally, we show that in cells depleted of ATP, the release of hsp 70 from maturing proteins is inhibited. Thus, in cells experiencing metabolic stress, newly synthesized proteins unable to properly fold, as will as mature proteins which begin to unfold become stably bound to hsp 72/73. As a consequence and over time, the free or available levels of pre-existing hsp 72/73 are reduced. We propose that this reduction in the available levels of hsp 72/73 is the trigger by which the stress response is initiated.  相似文献   

6.
Newly synthesized proteins leave the ribosome through a narrow tunnel in the large subunit. During ongoing synthesis, nascent protein chains are particularly sensitive to aggregation and degradation because they emerge from the ribosome in an unfolded state. In bacteria, the first protein to interact with nascent chains and facilitate their folding is the ribosome-associated chaperone trigger factor. Recently, crystal structures of trigger factor and of its ribosome-binding domain in complex with the large ribosomal subunit revealed that the chaperone adopts an extended 'dragon-shaped' fold with a large hydrophobic cradle, which arches over the exit of the ribosomal tunnel and shields newly synthesized proteins. These structural results, together with recent biochemical data on trigger factor and its interplay with other chaperones and factors that interact with the nascent chain, provide a comprehensive view of the role of trigger factor during co-translational protein folding.  相似文献   

7.
8.
The insect-baculovirus expression system has proved particularly useful for producing recombinant proteins that are biologically active. Overexpression of foreign proteins using the recombinant baculovirus system is often accompanied by aggregation of the overexpressed protein, which is thought to be due to a limitation of the translated protein folding in the infected cells. Co-infection of a recombinant baculovirus capable of expressing the human chaperone Hsp70 slightly increased the solubility of the overexpressed Epstein-Barr virus replication protein, BZLF1. Co-expression of Hsp70 and its co-factor, Hsdj or Hsp40, was here found to improve the solubility of the target protein several fold. Thus, a baculovirus expression system producing these molecular chaperones may find application for improved production of target foreign gene products in insect cells.  相似文献   

9.
Folding on the chaperone: yield enhancement through loose binding   总被引:1,自引:0,他引:1  
A variety of small cageless chaperones have been discovered that can assist protein folding without the consumption of ATP. These include mini-chaperones (catalytically active fragments of larger chaperones), as well as small proteins such as alpha-casein and detergents acting as "artificial chaperones." These chaperones all possess exposed hydrophobic patches on their surface that act as recognition sites for misfolded proteins. They lack the complexity of chaperonins (that encapsulate proteins in their inner rings) and their study can offer insight into the minimal requirements for chaperone function. We use molecular dynamics simulations to investigate how a cageless chaperone, modeled as a sphere of tunable hydrophobicity, can assist folding of a substrate protein. We find that under steady-state (non-stress) conditions, cageless chaperones that bind to a single substrate protein increase folding yields by reducing the time the substrate spends in an aggregation-prone state in a dual manner: (a) by competing for aggregation-prone hydrophobic sites on the surface of a protein, hence reducing the time the protein spends unprotected in the bulk and (b) by accelerating folding rates of the protein. In both cases, the chaperone must bind to and hold the protein loosely enough to allow the protein to change its conformation and fold while bound. Loose binding may enable small cageless chaperones to help proteins fold and avoid aggregation under steady-state conditions, even at low concentrations, without the consumption of ATP.  相似文献   

10.
Molecular chaperones are known to facilitate cellular protein folding. They bind non-native proteins and orchestrate the folding process in conjunction with regulatory cofactors that modulate the affinity of the chaperone for its substrate. However, not every attempt to fold a protein is successful and chaperones can direct misfolded proteins to the cellular degradation machinery for destruction. Protein quality control thus appears to involve close cooperation between molecular chaperones and energy-dependent proteases. Molecular mechanisms underlying this interplay have been largely enigmatic so far. Here we present a novel concept for the regulation of the eukaryotic Hsp70 and Hsp90 chaperone systems during protein folding and protein degradation.  相似文献   

11.
DnaK-DnaJ-GrpE and GroEL-GroES are the best-characterized molecular chaperone systems in the cytoplasm of Escherichia coli. A number of additional proteins, including ClpA, ClpB, HtpG and IbpA/B, act as molecular chaperones in vitro, but their function in cellular protein folding remains unclear. Here, we examine how these chaperones influence the folding of newly synthesized recombinant proteins under heat-shock conditions. We show that the absence of either CIpB or HtpG at 42 degrees C leads to increased aggregation of preS2-beta-galactosidase, a fusion protein whose folding depends on DnaK-DnaJ-GrpE, but not GroEL-GroES. However, only the deltaclpB mutation is deleterious to the folding of homodimeric Rubisco and cMBP, two proteins requiring the GroEL-GroES chaperonins to reach a proper conformation. Null mutations in clpA or the ibpAB operon do not affect the folding of these model substrates. Overexpression of ClpB, HtpG, IbpA/B or ClpA does not suppress inclusion body formation by the aggregation-prone protein preS2-S'-beta-galactosidase in wild-type cells or alleviate recombinant protein misfolding in dnaJ259, grpE280 or groES30 mutants. By contrast, higher levels of DnaK-DnaJ, but not GroEL-GroES, restore efficient folding in deltaclpB cells. These results indicate that ClpB, and to a lesser extent HtpG, participate in de novo protein folding in mildly stressed E. coli cells, presumably by expanding the ability of the DnaK-DnaJ-GrpE team to interact with newly synthesized polypeptides.  相似文献   

12.
Proper folding of newly synthesized viral proteins in the cytoplasm is a prerequisite for the formation of infectious virions. The major capsid protein Vp1 of simian virus 40 forms a series of disulfide-linked intermediates during folding and capsid formation. In addition, we report here that Vp1 is associated with cellular chaperones (HSP70) and a cochaperone (Hsp40) which can be coimmunoprecipitated with Vp1. Studies in vitro demonstrated the ATP-dependent interaction of Vp1 and cellular chaperones. Interestingly, viral cochaperones LT and ST were essential for stable interaction of HSP70 with the core Vp1 pentamer Vp1 (22-303). LT and ST also coimmunoprecipitated with Vp1 in vivo. In addition to these identified (co)chaperones, stable, covalently modified forms of Vp1 were identified for a folding-defective double mutant, C49A-C87A, and may represent a “trapped” assembly intermediate. By a truncation of the carboxyl arm of Vp1 to prevent the Vp1 folding from proceeding beyond pentamers, we detected several apparently modified Vp1 species, some of which were absent in cells transfected with the folding-defective mutant DNA. These results suggest that transient covalent interactions with known or unknown cellular and viral proteins are important in the assembly process.  相似文献   

13.
Mdj1p, a DnaJ homolog in the mitochondria of Saccharomyces cerevisiae, is involved in the folding of proteins in the mitochondrial matrix. In this capacity, Mdj1p cooperates with mitochondrial Hsp70 (mt-Hsp70). Here, we analyzed the role of Mdj1p as a chaperone for newly synthesized proteins encoded by mitochondrial DNA and for nucleus-encoded proteins as they enter the mitochondrial matrix. A series of conditional mutants of mdj1 was constructed. Mutations in the various functional domains led to a partial loss of Mdj1p function. The mutant Mdj1 proteins were defective in protecting the tester protein firefly luciferase against heat-induced aggregation in isolated mitochondria. The mitochondrially encoded var1 protein showed enhanced aggregation after synthesis in mdj1 mutant mitochondria. Mdj1p and mt-Hsp70 were found in a complex with nascent polypeptide chains on mitochondrial ribosomes. Mdj1p was not found to interact with translocation intermediates of imported proteins spanning the two membranes and exposing short segments into the matrix, in accordance with the lack of requirement of Mdj1p in the mt-Hsp70-mediated protein import into mitochondria. On the other hand, precursor proteins in transit which had further entered the matrix were found in a complex with Mdj1p. Our results suggest that Mdj1p together with mt-Hsp70 plays an important role as a chaperone for mitochondrially synthesized polypeptide chains emerging from the ribosome and for translocating proteins at a late import step.  相似文献   

14.
A large fraction of the newly translated polypeptides emerging from the ribosome require certain proteins, the so-called molecular chaperones, to assist in their folding. In Escherichia coli, three major chaperone systems are considered to contribute to the folding of newly synthesized cytosolic polypeptides. Trigger factor (TF), a ribosome-tethered chaperone, and DnaK are known to exhibit overlapping co-translational roles, whereas the cage-shaped GroEL, with the aid of the co-chaperonin, GroES, and ATP, is believed to be implicated in folding only after the polypeptides are released from the ribosome. However, the recent finding that GroEL-GroES overproduction permits the growth of E. coli cells lacking both TF and DnaK raised questions regarding the separate roles of these chaperones. Here, we report the puromycin-sensitive association of GroEL-GroES with translating ribosomes in vivo. Further experiments in vitro, using a reconstituted cell-free translation system, clearly demonstrate that GroEL associates with the translation complex and accomplishes proper folding by encapsulating the newly translated polypeptides in the central cavity formed by GroES. Therefore, we propose that GroEL is a versatile chaperone, which participates in the folding pathway co-translationally and also achieves correct folding post-translationally.  相似文献   

15.
The mechanisms involved in the construction of the icosahedral capsid of the African swine fever virus (ASFV) particle are not well understood at present. Capsid formation requires protein p72, the major capsid component, but other viral proteins are likely to play also a role in this process. We have examined the function of the ASFV structural protein pB438L, encoded by gene B438L, in virus morphogenesis. We show that protein pB438L associates with membranes during the infection, behaving as an integral membrane protein. Using a recombinant ASFV that inducibly expresses protein pB438L, we have determined that this structural protein is essential for the formation of infectious virus particles. In the absence of the protein, the virus assembly sites contain, instead of icosahedral particles, large aberrant tubular structures of viral origin as well as bilobulate forms that present morphological similarities with the tubules. The filamentous particles, which possess an aberrant core shell domain and an inner envelope, are covered by a capsid-like layer that, although containing the major capsid protein p72, does not acquire icosahedral morphology. This capsid, however, is to some extent functional, as the filamentous particles can move from the virus assembly sites to the plasma membrane and exit the cell by budding. The finding that, in the absence of protein pB438L, the viral particles formed have a tubular structure in which the icosahedral symmetry is lost supports a role for this protein in the construction or stabilization of the icosahedral vertices of the virus particle.  相似文献   

16.
17.
The 70-kDa heat shock protein (Hsp70) family of molecular chaperones cooperates with cofactors to promote protein folding, assembly of protein complexes and translocation of proteins across membranes. Although many cofactors of cytosolic Hsp70s have been identified, knowledge about cofactors of BiP/Kar2p, an endoplasmic reticulum (ER)-resident Hsp70, is still poor. Here we propose the Saccharomyces cerevisiae protein Rot1p as a possible cofactor of BiP/Kar2p involved in protein folding. Rot1p was found to be an essential, ER-localized membrane protein facing the lumen. ROT1 genetically interacted with several ER chaperone genes including KAR2, and the rot1-2 mutation triggered the unfolded protein response. Rot1p associated with Kar2p, especially under conditions of ER stress, and maturation of a model protein, a reduced form of carboxypeptidaseY, was impaired in a kar2-1 rot1-2 double mutant. These findings suggest that Rot1p participates in protein folding with Kar2p. Morphological analysis of rot1-2 cells revealed cell wall defects and accumulation of autophagic bodies in the vacuole. This implies that the protein folding machinery in which Rot1p is involved chaperones proteins acting in various physiological processes including cell wall synthesis and lysis of autophagic bodies.  相似文献   

18.
A membranous fraction that could synthesize viral RNA in vitro in the presence of magnesium salt, ribonucleotides, and an ATP-regenerating system was isolated from feline calicivirus (FCV)-infected cells. The enzymatically active component of this fraction was designated FCV replication complexes (RCs), by analogy to other positive-strand RNA viruses. The newly synthesized RNA was characterized by Northern blot analysis, which demonstrated the production of both full-length (8.0-kb) and subgenomic-length (2.5-kb) RNA molecules similar to those synthesized in FCV-infected cells. The identity of the viral proteins associated with the fraction was investigated. The 60-kDa VP1 major capsid protein was the most abundant viral protein detected. VP2, a minor structural protein encoded by open reading frame 3 (ORF3), was also present. Nonstructural proteins associated with the fraction included the precursor polypeptides Pro-Pol (76 kDa) and p30-VPg (43 kDa), as well as the mature nonstructural proteins p32 (derived from the N-terminal region of the ORF1 polyprotein), p30 (the putative "3A-like" protein), and p39 (the putative nucleoside triphosphatase). The isolation of enzymatically active RCs containing both viral and cellular proteins should facilitate efforts to dissect the contributions of the virus and the host to FCV RNA replication.  相似文献   

19.
Molecular chaperones are large proteins or protein complexes from which many proteins require assistance in order to fold. One unique property of molecular chaperones is the cavity they provide in which proteins fold. The interior surface residues which make up the cavities of molecular chaperone complexes from different organisms has recently been identified, including the well-studied GroEL-GroES chaperonin complex found in Escherichia coli. It was found that the interior of these protein complexes is significantly different than other protein surfaces and that the residues found on the protein surface are able to resist protein adsorption when immobilized on a surface. Yet it remains unknown if these residues passively resist protein binding inside GroEL-GroEs (as demonstrated by experiments that created synthetic mimics of the interior cavity) or if the interior also actively stabilizes protein folding. To answer this question, we have extended entropic models of substrate protein folding inside GroEL-GroES to include interaction energies between substrate proteins and the GroEL-GroES chaperone complex. This model was tested on a set of 528 proteins and the results qualitatively match experimental observations. The interior residues were found to strongly discourage the exposure of any hydrophobic residues, providing an enhanced hydrophobic effect inside the cavity that actively influences protein folding. This work provides both a mechanism for active protein stabilization in GroEL-GroES and a model that matches contemporary understanding of the chaperone protein.  相似文献   

20.
The common perception that molecular chaperones are involved primarily with assisting the folding of newly synthesized and stress-denatured polypeptide chains ignores the fact that this term was invented to describe the function of a protein that assists the assembly of folded subunits into oligomeric structures and only later was extended to embrace protein folding. Recent work has clarified the role of nuclear chaperones in the assembly of nucleosomes and has identified a cytosolic chaperone required for mammalian proteasome assembly, suggesting that the formation of other oligomeric complexes might be assisted by chaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号