首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA is known to fold into a variety of structural elements, many of which have sufficient sequence complexity to make the thermodynamic study of each possible variant impractical. We previously reported a method for isolating stable and unstable RNA sequences from combinatorial libraries using temperature gradient gel electrophoresis (TGGE). This method was used herein to analyze a six-nucleotide RNA hairpin loop library. Three rounds of in vitro selection were performed using TGGE, and unusually stable RNAs were identified by cloning and sequencing. Known stable tetraloops were found, including sequences belonging to the UNCG motif closed by a CG base pair, and the CUUG motif closed by a GC base pair. In addition, unknown tetraloops were found that were nearly as stable as cUNCGg, including sequences related through substitution of the U with a C (Y), the C with an A (M), or both. These substitutions allow hydrogen bonding and stacking interactions in the UNCG loop to be maintained. Thermodynamic analysis of YNMG and variant loops confirmed optimal stability with Y at position 1 and M at position 3. Similarity in structure and stability among YNMG loops was further supported by deoxyribose substitution, CD, and NMR experiments. A conserved tertiary interaction in 16S rRNA exists between a YAMG loop at position 343 and two adenines in the loop at position 159 (Escherichia coli numbering). NMR and functional group substitution experiments suggest that YNAG loops in particular have enhanced flexibility, which allows the tertiary interaction to be maintained with diverse loop sequences at position 159. Taken together, these results support the existence of an extended family of UNCG-like tetraloops with the motif cYNMGg that are thermodynamically stable and structurally similar and can engage in tertiary interactions in large RNA molecules.  相似文献   

2.
Du Z  Yu J  Andino R  James TL 《Biochemistry》2003,42(15):4373-4383
Stable RNA tetraloop motifs are found frequently in biologically active RNAs. These motifs carry out a wide variety of functions in RNA folding, in RNA-RNA and RNA-protein interactions. A great deal of knowledge about the structures and functions of tetraloop motifs has accumulated largely due to intensive theoretical, biochemical, and biophysical studies on three most frequently occurring families of tetraloop sequences, namely, the cUNCGg, the cGNRAg, and the gCUUGc sequences. Our knowledge surely is not exhaustive, and efforts are still being made to gain a better understanding. Here we report the NMR structure of a uCACGg tetraloop that occurs naturally within the cloverleaf RNA structure of the 5'-UTR of coxsackievirus B3. This tetraloop is the major determinant for interaction between the cloverleaf RNA and viral 3C protease, which is an essential part of a ribonucleoprotein complex that plays a critical role in the regulation of viral translation and replication. Our structure shows that the CACG tetraloop is closed by a wobble U.G base pair. The structure of the CACG tetraloop is stabilized by extensive base stacking and hydrogen bonding interactions strikingly similar to those previously reported for the cUUCGg tetraloop. Identification of these hallmark structural features strongly supports the existence of an extended YNCG tetraloop family. The U.G base pair closing the stem and the A residue in the loop introduce some small structural and themodynamic distinctions from the canonical cUUCGg tetraloop that may be important for recognition by the viral 3C protease.  相似文献   

3.
Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.  相似文献   

4.
RNA tertiary interactions involving docking of GNRA (N; any base; R; purine) hairpin loops into helical stem structures on other regions of the same RNA are one of the most common RNA tertiary interactions. In this study, we investigated a tertiary association between a GAAA hairpin tetraloop in a small branching ribozyme (DiGIR1) and a receptor motif (HEG P1 motif) present in a hairpin structure on a separate mRNA molecule. DiGIR1 generates a 2', 5' lariat cap at the 5' end of its downstream homing endonuclease mRNA by catalysing a self-cleavage branching reaction at an internal processing site. Upon release, the 5' end of the mRNA forms a distinct hairpin structure termed HEG P1. Our biochemical data, in concert with molecular 3D modelling, provide experimental support for an intermolecular tetraloop receptor interaction between the L9 GAAA in DiGIR1 and a GNRA tetraloop receptor-like motif (UCUAAG-CAAGA) found within the HEG P1. The biological role of this interaction appears to be linked to the homing endonuclease expression by promoting post-cleavage release of the lariat capped mRNA. These findings add to our understanding of how protein-coding genes embedded in nuclear ribosomal DNA are expressed in eukaryotes and controlled by ribozymes.  相似文献   

5.
6.
7.
Precise temporal control is needed for RNA viral genomes to translate sufficient replication-required products before clearing ribosomes and initiating replication. A 3′ translational enhancer in Turnip crinkle virus (TCV) overlaps an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. The higher-order structure in the region was examined through alteration of critical sequences revealing novel interactions between an H-type pseudoknot and upstream residues, and between the TSS and internal and terminal loops of an upstream hairpin. Our results suggest that the TSS forms a stable scaffold that allows for simultaneous interactions with external sequences through base pairings on both sides of its large internal symmetrical loop. Binding of TCV RNA-dependent RNA polymerase (RdRp) to the region potentiates a widespread conformational shift with substantial rearrangement of the TSS region, including the element required for efficient ribosome binding. Degrading the RdRp caused the RNA to resume its original conformation, suggesting that the initial conformation is thermodynamically favored. These results suggest that the 3′ end of TCV folds into a compact, highly interactive structure allowing RdRp access to multiple elements including the 3′ end, which causes structural changes that potentiate the shift between translation and replication.  相似文献   

8.
The contributions of various interactions in the GGCGCAAGCC hairpin containing a GCAA tetraloop were studied by computer simulations using the substitutions of functional groups. The guanosine (G) in the first tetraloop position or in the C-G closing base pair was replaced by 2-aminopurine (AP), and the individual tetraloop's adenosines (A) were replaced by purine (PUR). These substitutions eliminated particular hydrogen bonds thought to stabilize the GCAA tetraloop. For each substitution, molecular dynamics (MD) simulations were carried out in an aqueous solution with sodium counterions, using the CHARMM27 force field. The MD simulations showed that the substitutions in the first (G-->AP) and the third (A-->PUR) position of the GCAA tetraloop did not significantly influence the conformation of the hairpin. A long-lived bridging water molecule observed in the GCAA loop was present in both modified loops. The substitutions made in the last loop position (A-->PUR) or in the C-G base pair closing the tetraloop (G-->AP) to some extent influenced the loop structure and dynamics. These loops did not display the long-lived bridging water molecules. When the second A in the GCAA loop was replaced by PUR, the first A in the loop was observed in the anti or in the syn orientation about the glycosyl bond. The G to AP substitution in C-G base pair led to a change of their arrangement from the Watson-Crick to wobble. The MD simulations of the hairpin with C-AP wobble closing base pair showed increased conformational dynamics of the hairpin. The changes of hairpin formation free energy associated with the substitutions of individual bases were calculated by the free energy perturbation method. Our theoretical estimates suggest a larger destabilization for the G to AP substitutions in GCAA loop than for the substitutions of individual A's by PUR, which is in accordance with experimental tendency. The calculations predicted a similar free energy change for G to AP substitutions in the GCAA tetraloop and in the C-G closing base pair.  相似文献   

9.
The 5' noncoding region of the picornaviral genome begins with a cloverleaf which is required for viral replication, due at least in part to an interaction with the viral RNA polymerase as part of a fusion with the predominant viral protease. The necessary region of the cloverleaf has previously been narrowed to a highly conserved stem-loop. The solution structure of a 14-nucleotide RNA hairpin, which is part of the conserved stem-loop from human rhinovirus isotype 14, is presented here. The secondary structure of the hairpin is identical to predictions: a five base pair stem is bounded by a triloop with sequence UAU. However, the fold of the triloop is novel, with stacking of the second loop base onto the closing base pair of the stem, and deviations from A form geometry are introduced into the stem regions bordering the triloop, particularly on the 3' side. These deviations and the associated triloop structure could help to explain the distinct sequence conservation and mutational analysis data observed for the stem region of the hairpin, as compared to a second sequentially similar stem in the intact stem-loop.  相似文献   

10.
We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence.  相似文献   

11.
Tetraloops are very abundant structural elements of RNA that are formed by four nucleotides in a hairpin loop which is closed by a double stranded helical stem with some Watson-Crick base pairs. A tetraloop r(GCGAAGGC) was identified from the crystal structure of the central domain of 16S rRNA (727-730) in the Thermus thermophilus 30S ribosomal complex. The crystal structure of the 30S complex includes a total of 104 nucleotides from the central domain of the 16S rRNA and three ribosomal proteins S6, S15 and S18. Independent biochemical experiments have demonstrated that protein S15 plays the role in initiating the formation of the central domain of this complex. In the crystal, the tetraloop interacts with the protein S15 at two sites: one of them is associated with hydrogen bond interactions between residue His50 and nucleotide G730, and the other is associated with the occurrence of residue Arg53 beside A728. This paper uses molecular dynamics (MD) simulations to investigate the protein-dependent structural stability of the tetraloop and demonstrates the folding pathway of this tetraloop via melting denaturation and its subsequent refolding. Three important results are derived from these simulations: (i) The stability of nucleotide A728 appears to be protein dependent. Without the interaction with S15, A728 flips away from stacking with A729. (ii) The melting temperature demonstrated by the simulations is analogous to the results of thermodynamic experiments. In addition, the simulated folding of the tetraloop is stepwise: the native shape of the backbone is formed first; this is then followed by the formation of the Watson- Crick base pairs in the stem; and finally the hydrogen bonds and base stacking in the loop are formed. (iii) The tetraloop structure is similar to the crystal structure at salt concentrations of 0.1 M and 1.0 M used for the simulations, but the refolded structure at 0.1 M salt is more comparable to the crystal structure than at 1.0 M. The results from the simulations using both the Generalized Born continuum model and explicit solvent model (Particle Mesh Ewald) generate a similar pathway for unfolding/refolding of the tetraloop.  相似文献   

12.
Replication of the influenza A virus virion RNA (vRNA) requires the synthesis of full-length cRNA, which in turn is used as a template for the synthesis of more vRNA. A "corkscrew" secondary-structure model of the cRNA promoter has been proposed recently. However the data in support of that model were indirect, since they were derived from measurement, by use of a chloramphenicol acetyltransferase (CAT) reporter in 293T cells, of mRNA levels from a modified cRNA promoter rather than the authentic cRNA promoter found in influenza A viruses. Here we measured steady-state cRNA and vRNA levels from a CAT reporter in 293T cells, directly measuring the replication of the authentic influenza A virus wild-type cRNA promoter. We found that (i) base pairing between the 5' and 3' ends and (ii) base pairing in the stems of both the 5' and 3' hairpin loops of the cRNA promoter were required for in vivo replication. Moreover, nucleotides in the tetraloop at positions 4, 5, and 7 and nucleotides forming the 2-9 base pair of the 3' hairpin loop were crucial for promoter activity in vivo. However, the 3' hairpin loop was not required for polymerase binding in vitro. Overall, our results suggest that the corkscrew secondary-structure model is required for authentic cRNA promoter activity in vivo, although the precise role of the 3' hairpin loop remains unknown.  相似文献   

13.
The untranslated leader of retroviral RNA genomes encodes multiple structural signals that are critical for virus replication. In the human immunodeficiency virus, type 1 (HIV-1) leader, a hairpin structure with a palindrome-containing loop is termed the dimer initiation site (DIS), because it triggers in vitro RNA dimerization through base pairing of the loop-exposed palindromes (kissing loops). Controversy remains regarding the region responsible for HIV-2 RNA dimerization. Different studies have suggested the involvement of the transactivation region, the primer binding site, and a hairpin structure that is the equivalent of the HIV-1 DIS hairpin. We have performed a detailed mutational analysis of the HIV-2 leader RNA, and we also used antisense oligonucleotides to probe the regions involved in dimerization. Our results unequivocally demonstrate that the DIS hairpin is the main determinant for HIV-2 RNA dimerization. The 6-mer palindrome sequence in the DIS loop is essential for dimer formation. Although the sequence can be replaced by other 6-mer palindromes, motifs that form more than two A/U base pairs do not dimerize efficiently. The inability to form stable kissing-loop complexes precludes formation of dimers with more extended base pairing. Structure probing of the DIS hairpin in the context of the complete HIV-2 leader RNA suggests a 5-base pair elongation of the DIS stem as it is proposed in current RNA secondary structure models. This structure is supported by phylogenetic analysis of leader RNA sequences from different viral isolates, indicating that RNA genome dimerization occurs by a similar mechanism for all members of the human and simian immunodeficiency viruses.  相似文献   

14.
Zhang H  Fountain MA  Krugh TR 《Biochemistry》2001,40(33):9879-9886
The binding region of the Escherichia coli S2 ribosomal protein contains a conserved UUAAGU hairpin loop. The structure of the hairpin formed by the oligomer r(GCGU4U5A6A7G8U9CGCA), which has an r(UUAAGU) hairpin loop, was determined by NMR and molecular modeling techniques as part of a study aimed at characterizing the structure and thermodynamics of RNA hairpin loops. Thermodynamic data obtained from melting curves for this RNA oligomer show that it forms a hairpin in solution with the following parameters: DeltaH degrees = -42.8 +/- 2.2 kcal/mol, DeltaS degrees = -127.6 +/- 6.5 eu, and DeltaG degrees (37) = -3.3 +/- 0.2 kcal/mol. Two-dimensional NOESY WATERGATE spectra show an NOE between U imino protons, which suggests that U4 and U9 form a hydrogen bonded U.U pair. The U5(H2') proton shows NOEs to both the A6(H8) proton and the A7(H8) proton, which is consistent with formation of a "U" turn between nucleotides U5 and A6. An NOE between the A7(H2) proton and the U9(H4') proton shows the proximity of the A7 base to the U9 sugar, which is consistent with the structure determined for the six-nucleotide loop. In addition to having a hydrogen-bonded U.U pair as the first mismatch and a U turn, the r(UUAAGU) loop has the G8 base protruding into the solvent. The solution structure of the r(UUAAGU) loop is essentially identical to the structure of an identical loop found in the crystal structure of the 30S ribosomal subunit where the guanine in the loop is involved in tertiary interactions with RNA bases from adjacent regions [Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000) Nature 407, 327-339]. The similarity of the solution and solid-state structures of this hairpin loop suggests that formation of this hairpin may facilitate folding of 16S RNA.  相似文献   

15.
Abstract

The contributions of various interactions in the GGCGCAAGCC hairpin containing a GCAA tetraloop were studied by computer simulations using the substitutions of functional groups. The guanosine (G) in the first tetraloop position or in the C-G closing base pair was replaced by 2-aminopurine (AP), and the individual tetraloop's adenosines (A) were replaced by purine (PUR). These substitutions eliminated particular hydrogen bonds thought to stabilize the GCAA tetraloop. For each substitution, molecular dynamics (MD) simulations were carried out in an aqueous solution with sodium counterions, using the CHARMM27 force field. The MD simulations showed that the substitutions in the first (G→AP) and the third (A→PUR) position of the GCAA tetraloop did not significantly influence the conformation of the hairpin. A long-lived bridging water molecule observed in the GCAA loop was present in both modified loops. The substitutions made in the last loop position (A→PUR) or in the C-G base pair closing the tetraloop (G→AP) to some extent influenced the loop structure and dynamics. These loops did not display the long- lived bridging water molecules. When the second A in the GCAA loop was replaced by PUR, the first A in the loop was observed in the anti or in the syn orientation about the gly- cosyl bond. The G to AP substitution in C-G base pair led to a change of their arrangement from the Watson-Crick to wobble. The MD simulations of the hairpin with C-AP wobble closing base pair showed increased conformational dynamics of the hairpin. The changes of hairpin formation free energy associated with the substitutions of individual bases were calculated by the free energy perturbation method. Our theoretical estimates suggest a larger destabilization for the G to AP substitutions in GCAA loop than for the substitutions of individual A's by PUR, which is in accordance with experimental tendency. The calculations predicted a similar free energy change for G to AP substitutions in the GCAA tetraloop and in the C-G closing base pair.  相似文献   

16.
Higher-order RNA structures in the 3' untranslated region (3'UTR) of enteroviruses are thought to play a pivotal role in viral negative-strand RNA synthesis. The structure of the 3'UTR was predicted by thermodynamic calculations using the STAR (structural analysis of RNA) computer program and experimentally verified using chemical and enzymatic probing of in vitro-synthesized RNA. A possible pseudoknot interaction between the 3D polymerase coding sequence and domain Y and a "kissing" interaction between domains X and Y was further studied by mutational analysis, using an infectious coxsackie B3 virus cDNA clone (domain designation as proposed by E. V. Pilipenko, S. V. Maslova, A. N. Sinyakov, and V.I. Agol (Nucleic Acids Res. 20:1739-1745, 1992). The higher-order RNA structure of the 3'UTR appeared to be maintained by an intramolecular kissing interaction between the loops of the two predominant hairpin structures (X and Y) within the 3'UTR. Disturbing this interaction had no effect on viral translation and processing of the polyprotein but exerted a primary effect on viral replication, as was demonstrated in a subgenomic coxsackie B3 viral replicon, in which the capsid P1 region was replaced by the luciferase gene. Mutational analysis did not support the existence of the pseudoknot interaction between hairpin loop Y and the 3D polymerase coding sequence. Based on these experiments, we constructed a three-dimensional model of the 3'UTR of coxsackie B virus that shows the kissing interaction as the essential structural feature of the origin of replication required for its functional competence.  相似文献   

17.
Control of Rous sarcoma virus RNA splicing depends in part on the interaction of U1 and U11 snRNPs with an intronic RNA element called the negative regulator of splicing (NRS). A 23mer RNA hairpin (NRS23) of the NRS directly binds U1 and U11 snRNPs. Mutations that disrupt base-pairing between the loop of NRS23 and U1 snRNA abolish its negative control of splicing. We have determined the solution structure of NRS23 using NOEs, torsion angles, and residual dipolar couplings that were extracted from multidimensional heteronuclear NMR spectra. Our structure showed that the 6-bp stem of NRS23 adopts a nearly A-form duplex conformation. The loop, which consists of 11 residues according to secondary structure probing, was in a closed conformation. U913, the first residue in the loop, was bulged out or dynamic, and loop residues G914-C923, G915-U922, and U916-A921 were base-paired. The remaining UUGU tetraloop sequence did not adopt a stable structure and appears flexible in solution. This tetraloop differs from the well-known classes of tetraloops (GNRA, CUYG, UNCG) in terms of its stability, structure, and function. Deletion of the bulged U913, which is not complementary to U1 snRNA, increased the melting temperature of the RNA hairpin. This hyperstable hairpin exhibited a significant decrease in binding to U1 snRNP. Thus, the structure of the NRS RNA, as well as its sequence, is important for interaction with U1 snRNP and for splicing suppression.  相似文献   

18.
The formation of genomic RNA dimers during the retroviral life cycle is essential for optimal viral replication and infectivity. The sequences and RNA structures responsible for this interaction are located in the untranslated 5' leader RNA, along with other cis-acting signals. Dimer formation occurs by specific interaction between identical structural motifs. It is believed that an initial kissing hairpin forms following self-recognition by autocomplementary RNA loops, leading to formation of an extended stable duplex. The dimerization initiation site (DIS) of the deltaretrovirus human T-cell lymphotropic virus type-I (HTLV-I) has been previously localized to a 14-nucleotide sequence predicted to contain an RNA stem loop. Biochemical probing of the monomeric RNA structure using RNAse T1, RNAse V1, RNAse U2, lead acetate, and dimethyl sulfate has led to the generation of the first structural map of the HTLV-I DIS. A comprehensive data set of individual nucleotide modifications reveals that the structural motif responsible for HTLV-I RNA dimerization forms a trinucleotide RNA loop, unlike any previously characterized retroviral dimerization motif. Molecular modeling demonstrates that this can be formed by an unusual C:synG base pair closing the loop. Comparative phylogeny indicates that such a motif may also exist in other deltaretroviruses.  相似文献   

19.
Thermal denaturation profiles of an oligodeoxynucleotide that forms a hairpin structure with a cytidine-rich loop show an unexpected transition at 60 degrees C at pH 5.0 but not at pH 8.0. Analytical ultracentrifugation shows that this transition reflects dimer formation via the interaction of loops from two molecules to form a novel structure termed the h-dimer. The dependence of this structure on low pH implies the formation of cytosine-protonated cytosine base pairs. NMR spectroscopy, thermal denaturation and ultraviolet absorption spectral analysis suggest a similarity to the i-motif structure recently proposed for the interaction of deoxycytidine oligomers. The use of hairpin loops to form i-motif-like structures may prove useful in searches for cognate proteins and possibly in the production of antibodies.  相似文献   

20.
To increase our understanding of the dynamics and complexities of the RNA folding process, and therewith to improve our ability to predict RNA secondary structure by computational means, we have examined the foldings of a large number of phylogenetically and structurally diverse 16S and 16S-like rRNAs and compared these results with their comparatively derived secondary structures. Our initial goals are to establish the range of prediction success for this class of rRNAs, and to begin comparing and contrasting the foldings of these RNAs. We focus here on structural features that are predicted with confidence as well as those that are poorly predicted. Whereas the large set of Archaeal and (eu)Bacterial 16S rRNAs all fold well (69% and 55% respectively), some as high as 80%, many Eucarya and mitochondrial 16S rRNAs are poorly predicted (approximately 30%), with a few of these predicted as low as 10-20%. In general, base pairs interacting over a short distance and, in particular, those closing hairpin loops, are predicted significantly better than long-range base pairs and those closing multistem loops and bulges. The prediction success of hairpin loops varies, however, with their size and context. Analysis of some of the RNAs that do not fold well suggests that the composition of some hairpin loops (e.g., tetraloops) and the higher frequency of noncanonical pairs in their comparatively derived structures might contribute to these lower success rates. Eucarya and mitochondrial rRNAs reveal further novel tetraloop motifs, URRG/A and CRRG, that interchange with known stable tetraloop in the procaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号