首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
2.
为获得苯丙氨酸脱氨酶(PAL)在食品级乳酸乳球菌中的高效表达,将欧芹palcDNA(palnat)及根据乳酸乳球菌偏爱密码子设计人工合成的pal基因(palart)重组并转化到两种乳酸乳球菌NICE诱导表达系统中,测定基因工程菌表达PAL酶的量及活性,对比分析密码子偏爱性对乳酸乳球菌表达外源蛋白的影响。结果表明在两种乳酸乳球菌NICE表达系统中,使用偏爱密码子均可显著提高PAL酶的表达效率,使NZ9000/pNZ8048表达系统表达量提高22.23倍,NZ3900/pNZ8149系统提高35.90倍。此研究获得了安全高效表达PAL,可用于治疗苯丙酮尿症的基因工程菌。  相似文献   

3.
为构建苯丙氨酸脱氨酶的一种更新更高表达的基因工程菌,取得治疗高苯丙氨酸血症大鼠的更佳疗效。将欧芹PAL cDNA重组到质粒pNZ8048中,构建翻译融合载体和转录融合载体,分别转化乳酸乳球菌NZ9000。对两种高效表达菌株的酶活性差异进行比较,观察Nisin诱导的动态进程,并利用新鲜培养的p(NZ8048-PAL)1/NZ9000工程菌进行了高苯丙氨酸血症大鼠(称PKU动物模型)的治疗实验。结果表明:(1)翻译融合型菌株具有更高的酶活性;(2)当Nisin的诱导时间达6h时, 产物肉桂酸生成量基本达到峰值;(3)给高苯丙氨酸血症大鼠灌喂新鲜培养的p(NZ8048-PAL)1/NZ9000工程菌(翻译融合型), 观察到该工程菌能显著降低模型动物血中Phe浓度,从而取得了更好的疗效。    相似文献   

4.
利用基因重组技术 ,在大肠杆菌中克隆并表达苯丙氨酸脱氨酶 (PAL) (EC4 .3 .1 .5) ,并应用此酶转化肉桂酸生成L 苯丙氨酸。方法是将欧芹苯丙氨酸脱氨酶cDNA亚克隆到组成型表达载体pMG3 6e启动子P3 2下游 ,以菌落PCR法鉴定插入片段的大小和方向都正确的克隆 ,进而以HPLC检测肉桂酸浓度的方法鉴别重组质粒有催化肉桂酸生成L 苯丙氨酸的酶活力。结果获得能表达PAL酶活性的阳性克隆 ,在pH1 0 ,含 1 .0 %肉桂酸、8.0mol/L氨的转化液中 ,3 0℃反应 2 0h ,肉桂酸重量转化率可达 60 %。该基因工程菌有希望用于工业化生产L 苯丙氨酸。  相似文献   

5.
利用基因重组技术,在大肠杆菌中克隆并表达苯丙氨酸脱氨酸(PAL)(EC4.3.1.5),并应用此酶转化肉桂酸生成L-苯丙氨酸。方法是将欧芹苯丙氨酸脱氨酶cDNA亚克隆到组成型表达载体pMG36e启动子P32下游,以菌落PCR法鉴定插一段的大小和方向都正确的克隆,进而以HPLC检测肉桂酸浓度的方法鉴别重组质粒有催化肉桂酸生成L-苯丙氨酸的酶活力。结果获得能表达PAL酶活性的阳性克隆,在PH10,含1  相似文献   

6.
乳酸乳球菌基因表达载体系统的研究   总被引:5,自引:0,他引:5  
向华  谭华荣  刘敬忠   《微生物学通报》1998,25(4):230-232
乳酸乳球菌(IaCtOCOOCCClaCrts)是乳球菌属(IastOCOCCCS)最重要和最典型的一个种,该菌为兼性厌氧的革兰氏阳性菌,是乳品工业发酵的重要菌类,是在食品及医药工程领域具有重要应用前景的食品级微生物[‘]。乳酸乳球菌中存在大量的染色体外因子(如质粒和噬菌体),为其分子生物学研究和基因载体系统的发展提供了极好的材料。在近十多年中,随着乳酸乳球菌内源性质粒的去除和电穿孔转基因技术的建立以及乳酸乳球菌各类表达信号的分离和克隆,已建立和发展了一系列具有不同用途的乳酸乳球菌载体和受体系统。这些载体包括基本的…  相似文献   

7.
本文根据GenBank中报道的大肠埃希菌MG1655全基因组DNA序列中SOD的编码基因序列设计引物,PCR扩增大肠埃希菌锰超氧化物歧化酶(Mn-SOD)基因,并将其克隆入原核高效表达质粒载体pBV220中构建重组质粒pBV220-sod,并将其电转入乳酸乳球菌MG1363中获得了成功表达,为SOD发酵奶的研制奠定了基础。  相似文献   

8.
人铜锌超氧化物歧化酶基因在乳酸乳球菌中的食品级表达   总被引:4,自引:1,他引:4  
以lacF基因为食品级选择标记,构建了乳酸乳球菌食品级基因表达系统,并进而实现了人铜锌超氧化物歧化酶基因在乳酸乳球菌中的食品级表达。首先构建了含有lacF基因两侧同源DNA序列(0.5kb)的整合型质粒pUCEmDE,通过pUCEmDE与乳酸乳球菌MG5267染色体上单拷贝的乳糖操纵子之间的同源双交换,构建了lacF基因缺失突变的食品级受体菌WZ103 (Lac-),并经PCR及Lac表型检测所验证。然后构建了互补质粒pMG36eF,其lacF基因的表达受组成型的强启动子P32的控制。将其电转化导入WZ103后,Lac+表型得到恢复,表明WZ103中lacF基因的功能可被互补质粒pMG36eF上的lacF基因互补。随后,以互补质粒pMG36eF为基础,构建了不含任何抗生素抗性选择标记的人铜锌超氧化物歧化酶基因的食品级表达质粒pWZ104。通过非变性聚丙烯酰胺凝胶电泳和SOD活性凝胶染色分析,检测到WZ103(pWZ104)中Cu/Zn SOD的表达,并且具有生物活性。  相似文献   

9.
乳链菌肽前体基因(nisZ)在乳酸乳球菌中的克隆和表达   总被引:7,自引:1,他引:7  
用PCR技术从克隆有完整乳链菌肽生物合成基因簇(来自于乳链菌肽高产菌株L.lactis AL2)的重组噬菌体λHJ-3中扩增了编码乳链菌肽的前体基因,与pMG36e连接得到重组质粒pHJ201,用电击转化法将pHJ201转化到L.lactis NZ9800中,经活性测定和Tricine-SDS-PAGE电泳证实乳链菌肽前体基因获得了功能表达。DNA序列分析表明乳链菌肽高产菌株L.lactis AL2产生的是NisinZ。发现pHJ201d L.lactis NZ9800 中有良好的稳定性。  相似文献   

10.
乳酸乳球菌食品级表达载体的研究进展   总被引:5,自引:0,他引:5  
乳酸乳球菌(L.lactis)是乳球菌属中最重要和最典型的一个种,在食品工业中应用广泛,被公认为安全的(generally regards as safe,GRAS)食品级微生物。以乳酸乳球菌作为宿主菌,构建表达载体用来表达异源蛋白和酶,逐渐成为食品工业、生物制药和疫苗研究的热点。近年来,乳酸乳球菌的分子微生物学研究取得了重大进展,这为表达载体的构建奠定了基础,一些具有不同用途的乳酸乳球菌基因表达载体已经构建,用来表达抗原蛋白、细胞因子和生物酶等。其中,以来源于食品级微生物的DNA片段构建的食品级表达载体引起人们的关注。  相似文献   

11.
In parsley (Petroselinum crispum), phenylalanine ammonia-lyase (PAL) is encoded by 4 structurally similar genes. The nucleotide sequence of a near full-length cDNA and the deduced amino acid sequence of PAL-4 are presented and compared with the corresponding sequences of PAL-1, a previously described representative of the gene family. Transformation of Escherichia coli cells with PAL-1 or PAL-4 cDNA yielded catalytically active PAL, suggesting that the catalytic center of the enzyme is formed spontaneously rather than by a plant-specific mechanism.  相似文献   

12.
For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.  相似文献   

13.
For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.  相似文献   

14.
The plant enzyme phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) shows homology to histidine ammonia-lyase (HAL) whose structure has been solved by X-ray crystallography. Based on amino-acid sequence alignment of the two enzymes, mutagenesis was performed on amino-acid residues that were identical or similar to the active site residues in HAL to gain insight into the importance of this residues in PAL for substrate binding or catalysis. We mutated the following amino-acid residues: S203, R354, Y110, Y351, N260, Q348, F400, Q488 and L138. Determination of the kinetic constants of the overexpressed and purified enzymes revealed that mutagenesis led in each case to diminished activity. Mutants S203A, R354A and Y351F showed a decrease in kcat by factors of 435, 130 and 235, respectively. Mutants F400A, Q488A and L138H showed a 345-, 615- and 14-fold lower kcat, respectively. The greatest loss of activity occurred in the PAL mutants N260A, Q348A and Y110F, which were 2700, 2370 and 75 000 times less active than wild-type PAL. To elucidate the possible function of the mutated amino-acid residues in PAL we built a homology model of PAL based on structural data of HAL and mutagenesis experiments with PAL. The homology model of PAL showed that the active site of PAL resembles the active site of HAL. This allowed us to propose possible roles for the corresponding residues in PAL catalysis.  相似文献   

15.
A beta-galactosidase gene from Clostridium acetobutylicum NCIB 2951 was expressed after cloning into pSA3 and electroporation into derivatives of Lactococcus lactis subsp. lactis strains H1 and 7962. When the clostridial gene was introduced into a plasmid-free derivative of the starter-type Lact. lactis subsp. lactis strain H1, the resulting construct had high beta-galactosidase activity but utilized lactose only slightly faster than the recipient. beta-galactosidase activity in the construct decreased by over 50% if the 63 kb Lac plasmid pDI21 was also present with the beta-galactosidase gene. Growth rates of Lac+ H1 and 7962 derivatives were not affected after introduction of the clostridial beta-galactosidase, even though beta-galactosidase activity in a 7962 construct was more than double that of the wild-type strain. When pDI21 was electroporated into a plasmid-free variant of strain 7962, the recombinant had high phospho-beta-galactosidase activity and a growth rate equal to that of the H1 wild-type strain. The H1 plasmid-free strain grew slowly in T5 complex medium, utilized lactose and contained low phospho-beta-galactosidase activity. We suggest that beta-galactosidase expression can be regulated by the lactose phosphotransferase system-tagatose pathway and that Lact. lactis subsp. lactis strain H1 has an inefficient permease for lactose and contains chromosomally-encoded phospho-beta-galactosidase genes.  相似文献   

16.
Phenylalanine ammonia-lyase (PAL) from spinach (Spinacia oleracea L.) leaves was resolved into three forms by diethyl-aminoethyl(DEAE)-cellulose chromatography. Two forms were found in isolated chloroplasts, and the third form (the major component) was located outside of the chloroplasts. One of the chloroplast forms of the enzyme (designated the regulatory form) was activated by reduced thioredoxin. Neither the other chloroplast form nor the extra-chloroplast form showed a response to thioredoxin. After further purification by hydroxyapatite column chromatography and gel filtration, the regulatory form of chloroplast PAL was stimulated approximately 3-fold by thioredoxin reduced either photochemically by chloroplast membranes, via ferredoxin and ferredoxin-thioredoxin reductase, or chemically by dithiothreitol. Once activated, the enzyme required an added oxidant for deactivation. Physiological oxidants-oxidized glutathione (GSSG) and dehydroascorbate-as well as nonphysiological oxidants-sodium tetrathionate and diamide-were effective in deactivation. The results indicate that chloroplast PAL is regulated by light via the ferredoxin/thioredoxin system in a manner similar to that described for regulatory enzymes of CO2 assimilation. The extra-chloroplast form of the enzyme, by contrast, appears to be regulated by light via the earlier-described phytochrome-linked system.  相似文献   

17.
Several amino acids in the active center of the 6-phospho-beta-galactosidase from Lactococcus lactis were replaced by the corresponding residues in homologous enzymes of glycosidase family 1 with different specificities. Three mutants, W429A, K435V/Y437F and S428D/ K435V/Y437F, were constructed. W429A was found to have an improved specificity for glucosides compared with the wild-type, consistent with the theory that the amino acid at this position is relevant for the distinction between galactosides and glucosides. The k(cat)/K(m) for o-nitrophenyl-beta-D-glucose-6-phosphate is 8-fold higher than for o-nitrophenyl-beta-D-galactose-6-phosphate which is the preferred substrate of the wild-type enzyme. This suggests that new hydrogen bonds are formed in the mutant between the active site residues, presumably Gln19 or Trp421 and the C-4 hydroxyl group. The two other mutants with the exchanges in the phosphate-binding loop were tested for their ability to bind phosphorylated substrates. The triple mutant is inactive. The double mutant has a dramatically decreased ability to bind o-nitrophenyl-beta-D-galactose-6-phosphate whereas the interaction with o-nitrophenyl-beta-D-galactose is barely altered. This result shows that the 6-phospho-beta-galactosidase and the related cyanogenic beta-glucosidase from Trifolium repens have different recognition mechanisms for substrates although the structures of the active sites are highly conserved.  相似文献   

18.
The gfp gene from Aequorea victoria, encoding the green fluorescent protein (GFP) has been expressed in Lactococcus lactis subsp. lactis biovar cremoris MG1363, upon construction and introduction of plasmid pLS1GFP into this host. GFP was monitored in living cells during growth to evaluate its use in molecular and physiological studies. Quantification of the levels of GFP expressed by cultures was feasible by fluorescence spectroscopy. Phase-contrast and fluorescence microscopy allowed us to distinguish, in mixed cultures, lactococcal cells expressing GFP. Our results indicate that GFP can be used as a reporter in L. lactis.  相似文献   

19.
Lactic acid bacteria, such as Lactococcus lactis, are attractive hosts for the production of plant-bioactive compounds because of their food grade status, efficient expression, and metabolic engineering tools. Two genes from strawberry (Fragaria x ananassa), encoding an alcohol acyltransferase (SAAT) and a linalool/nerolidol synthase (FaNES), were cloned in L. lactis and actively expressed using the nisin-induced expression system. The specific activity of SAAT could be improved threefold (up to 564 pmol octyl acetate h-1 mg protein-1) by increasing the concentration of tRNA1Arg, which is a rare tRNA molecule in L. lactis. Fermentation tests with GM17 medium and milk with recombinant L. lactis strains expressing SAAT or FaNES resulted in the production of octyl acetate (1.9 microM) and linalool (85 nM) to levels above their odor thresholds in water. The results illustrate the potential of the application of L. lactis as a food grade expression platform for the recombinant production of proteins and bioactive compounds from plants.  相似文献   

20.
Lactic acid bacteria, such as Lactococcus lactis, are attractive hosts for the production of plant-bioactive compounds because of their food grade status, efficient expression, and metabolic engineering tools. Two genes from strawberry (Fragaria x ananassa), encoding an alcohol acyltransferase (SAAT) and a linalool/nerolidol synthase (FaNES), were cloned in L. lactis and actively expressed using the nisin-induced expression system. The specific activity of SAAT could be improved threefold (up to 564 pmol octyl acetate h−1 mg protein−1) by increasing the concentration of tRNA1Arg, which is a rare tRNA molecule in L. lactis. Fermentation tests with GM17 medium and milk with recombinant L. lactis strains expressing SAAT or FaNES resulted in the production of octyl acetate (1.9 μM) and linalool (85 nM) to levels above their odor thresholds in water. The results illustrate the potential of the application of L. lactis as a food grade expression platform for the recombinant production of proteins and bioactive compounds from plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号