首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large size (six membrane-spanning repeats in each of four domains) and asymmetric architecture of the voltage-dependent Na+ channel has hindered determination of its structure. With the goal of determining the minimum structure of the Na+ channel permeation pathway, we created two stable cell lines expressing the voltage-dependent rat skeletal muscle Na+ channel (micro1) with a polyhistidine tag on the C terminus (muHis) and pore-only micro1 (muPore) channels with S1-S4 in all domains removed. Both constructs were recognized by a Na+ channel-specific antibody on a Western blot. muHis channels exhibited the same functional properties as wild-type micro1. In contrast, muPore channels did not conduct Na+ currents nor did they bind [3H]saxitoxin. Veratridine caused 40 and 54% cell death in muHis- and muPore-expressing cells, respectively. However, veratridine-induced cell death could only be blocked by tetrodotoxin in cells expressing muHis, but not muPore. Furthermore, using a fluorescent Na+ indicator, we measured changes in intracellular Na+ induced by veratridine and a brevotoxin analogue, pumiliotoxin. When calibrated to the maximum signal after addition of gramicidin, the maximal percent increases in fluorescence (deltaF) were 35 and 31% in cells expressing muHis and muPore, respectively. Moreover, in the presence of 1 microm tetrodotoxin, deltaF decreased significantly to 10% in muHis- but not in muPore-expressing cells (43%). In conclusion, S5-P-S6 segments of micro1 channels form a toxin-activable ionophore but do not reconstitute the Na+ channel permeation pathway with full fidelity.  相似文献   

2.
The cell line C9 used in this paper has a resting potential of --50 mV (+/- 10 mV) but is unable to generate an action potential upon electrical stimulation. The cell membrane has receptors for the selectivity filter toxin tetrodotoxin as well as for the gating system toxins, veratridine, scorpion toxin and sea anemone toxin. The Na+ channel which remains silent to electrical stimulation in the absence of toxins can be chemically activated by the gating system toxins. This has been demonstarted by electrophysiological techniques and by 22Na+ flux studies. The electrophysiological approach has shown that the sea anemone toxin is able to induce a spontaneous slow-wave activity inhibited by tetrodotoxin. 22Na+ influx analyses have shown that veratridine and the sea anemone toxin produce an important increase of the initial rate of 22Na+ influx into the C9 cell. The stimulation of 22Na+ entry by these gating system toxins is similar to that found using spiking neuroblastoma cells. Veratridine and the sea anemone toxin on one hand as well as veratridine and the scorpion toxin on the other hand are synergistic in their action to stabilize an open and highly permeable form of the sodium channel. Stimulation of 22Na+ entry into the cell through the sodium channel maintained open by the gating system neurotoxins is completely suppressed by tetrodotoxin.  相似文献   

3.
4.
Incorporation of the saxitoxin receptor of the sodium channel solubilized with Triton X-100 and purified 250-fold from rat brain into phosphatidylcholine vesicles is described. Fifty to 80% of the saxitoxin receptor sites are recovered in the reconstituted vesicles (KD = 3 nM). Unlike the detergent-solubilized saxitoxin receptor, the reconstituted saxitoxin binding activity is stable to incubation at 36 degrees C. Approximately 75% of the reconstituted saxitoxin receptor sites are externally oriented and 25% are inside-out. The initial rate of 22Na+ uptake into reconstituted vesicles is increased up to 3- to 4-fold by veratridine with a K0.5 of 11 microM. Seventy per cent of this increase is blocked by external tetrodotoxin (TTX) with a Ki of 10 nM. All of the veratridine-stimulated 22Na+ uptake is blocked when TTX is present on both sides of the vesicle membrane, or when tetracaine is added to the external medium. The apparent binding constants for veratridine, saxitoxin, and TTX are essentially identical to those in intact rat brain synaptosomes. The results demonstrate reconstitution of sodium transport, as well as neurotoxin binding and action, from substantially purified sodium channel preparations.  相似文献   

5.
A neuronal morphological phenotype can be induced in cultured Spodoptera frugiperda insect cells (Sf21) by supplementing serum‐containing media with 20‐hydroxyecdysone (20‐HE) and/or insulin. In this study, the primary objectives were to determine any role of ion channels in mediating the morphological change in cells treated with 20‐HE and insulin, and whether serum was required to observe this effect. Results showed serum‐free media also induced growth of processes in Sf21 cells, but at a lower percentage than that found previously in cells bathed in serum‐containing media. Veratridine, a sodium channel activator, increased cell survival when applied in combination with 20‐HE to Sf21 cells, and the effect was blocked by tetrodotoxin (1 μM) a known sodium channel blocker. Cobalt, a calcium channel blocker, showed significant inhibition of cell process growth when applied in combination with both 20‐HE and 20‐HE plus veratridine. Cobalt also showed significant inhibition of cell process growth when applied in combination with insulin. Thus, some type of sodium channel, as well as a mechanism for transmembrane calcium ion movement, are apparently expressed in Sf21 cells and are involved in the differentiation process. These cell lines may be used in a wide variety of endeavors, including the screening of insecticides, as well as foster basic studies of neurodevelopment and ecdysone action.  相似文献   

6.
A quantitative assay for sodium channel blocking toxins such as tetrodotoxin and saxitoxin has been developed for use with a microtitre plate reader. Mouse neuroblastoma cells, which die rapidly in the presence of ouabain and veratridine, were protected by tetrodotoxin; surviving cells were detected by their uptake of the vital dye Neutral red which was quantified with a microtitre plate reader at 540 nm. A sigmoidal dose response curve was obtained and tetrodotoxin concentrations were readily measured over the range 10 nM to 500 nM (3.2-160 ng/ml). With this method, sodium channel blocking toxins were detected directly, without processing or concentration, in culture supernates of several marine bacteria, including Shewanella alga, Alteromonas tetraodonis, Listonella (Vibrio) pelagia, V. alginolyticus, V. anguillarum and V. tubiashi. Culture supernates of Shewanella alga contained up to 510 ng/ml of sodium channel blocking toxin (using tetrodotoxin as a standard).  相似文献   

7.
The cell line C9 used in this paper has a resting potential of ?50 mV (±10 mV) but is unable to generate an action potential upon electrical stimulation. The cell membrane has receptors for the selectivity filter toxin tetrodotoxin as well as for the gating system toxins, veratridine, scorpion toxin and sea anemone toxin. The Na+ channel which remains silent to electrical stimulation in the absence of toxins can be chemically activated by the gating system toxins. This has been demonstrated by electrophysiological techniques and by 22Na+ flux studies. The electrophysiological approach has shown that the sea anemone toxin is able to induce a spontaneous slow-wave activity inhibited by tetrodotoxin. 22Na+ influx analyses have shown that veratridine and the sea anemone toxin produce an important increase of the initial rate of 22Na+ influx into the C9 cell. The stimulation of 22Na+ entry by these gating system toxins is similar to that found using spiking neuroblastoma cells. Veratridine and the sea anemone toxin on one hand as well as veratridine and the scorpion toxin on the other hand are synergistic in their action to stabilize an open and highly permeable form of the sodium channel. Stimulation of 22Na+ entry into the cell through the sodium channel maintained open by the gating system neurotoxins is completely suppressed by tetrodotoxin.  相似文献   

8.
The purification of axonal membranes of crustaceans was followed by measuring enrichment in [3H]tetrodotoxin binding capacity and in Na+, K+-ATPase activity. A characteristic of these membranes is their high content of lipids and their low content of protein as compared to other types of plasmatic membranes. The axonal membrane contains myosin-like, actin-like, tropomyosin-like, and tubulin-like proteins. It also contains Na+, K+-ATPase and acetylcholinesterase. The molecular weights of these two enzymes after solubilization are 280,000 and 270,000, respectively. The molecular weights of the catalytic subunits are 96,000 for ATPase and 71,000 for acetylcholinesterase. We confirmed the presence of a nicotine binding component in the axonal membrane of the lobster but we have been unable to find [3H]nicotine binding to crab axonal membranes. The binding to axonal membranes og of the sodium channel, has been studied in detail. The dissociation constant for the binding of [3H]tetrodotoxin to the axonal membrane receptor is 2.9 nM at pH 7.4. The concentration of the tetrodotoxin receptor in crustacean membranes is about 10 pmol/mg of membrane protein, 7 times less than the acetylcholinesterase, 30 times less than the Na+, K+-ATPase, and 30 times less than the nicotine binding component in the lobster membrane. A reasonable estimate indicates that approximately only one peptide chain in 1000 constitutes the tetrodotoxin binding part of the sodium channel in the axonal membrane. Veratridine, which acts selectively on the resting sodium permeability, binds to the phospholipid part of the axonal membrane. [3H]Veratridine binding to membranes parallels the electrophysiological effect. Veratridine and tetrodotoxin have different receptor sites. Although tetrodotoxin can repolarize the excitable membrane of a giant axon depolarized by veratridine, veratridine does not affect the binding of [3H]tetrodotoxin to purified axonal membranes. Similarly, tetrodotoxin does not affect the binding of [3H]veratridine to axonal membranes. Scorpion neurotoxin I, a presynaptic toxin which affects both the Na+ and the K+ channels, does not interfere with the binding of [3H]tetrodotoxin or [3H]veratridine to axonal membranes. Tetrodotoxin, veratridine, and scorpion neurotoxin I, which have in common the perturbation of the normal functioning of the sodium channel, act upon three different types of receptor sites.  相似文献   

9.
The intermediate-conductance calcium-activated potassium channel (IK1) promotes cell proliferation of numerous cell types including endothelial cells, T lymphocytes, and several cancer cell lines. The mechanism underlying IK1-mediated cell proliferation was examined in human embryonic kidney 293 (HEK293) cells expressing recombinant human IK1 (hIK1) channels. Inhibition of hIK1 with TRAM-34 reduced cell proliferation, while expression of hIK1 in HEK293 cells increased proliferation. When HEK293 cells were transfected with a mutant (GYG/AAA) hIK1 channel, which neither conducts K(+) ions nor promotes Ca(2+) entry, proliferation was increased relative to mock-transfected cells. Furthermore, when HEK293 cells were transfected with a trafficking mutant (L18A/L25A) hIK1 channel, proliferation was also increased relative to control cells. The lack of functional activity of hIK1 mutants at the cell membrane was confirmed by a combination of whole cell patch-clamp electrophysiology and fura-2 imaging to assess store-operated Ca(2+) entry and cell surface immunoprecipitation assays. Moreover, in cells expressing hIK1, inhibition of ERK1/2 and JNK kinases, but not of p38 MAP kinase, reduced cell proliferation. We conclude that functional K(+) efflux at the plasma membrane and the consequent hyperpolarization and enhanced Ca(2+) entry are not necessary for hIK1-induced HEK293 cell proliferation. Rather, our data suggest that hIK1-induced proliferation occurs by a direct interaction with ERK1/2 and JNK signaling pathways.  相似文献   

10.
Excessive activation of N-methyl-D-aspartate (NMDA) receptors leads to cell death in human embryonic kidney-293 (HEK) cells which have been transfected with recombinant NMDA receptors. To evaluate the role of protein kinase C (PKC) activation in NMDA-mediated toxicity, we have analyzed the survival of transfected HEK cells using trypan blue exclusion. We found that NMDA-mediated death of HEK cells transfected with NR1/NR2A subunits was increased by exposure to phorbol esters and reduced by inhibitors of PKC activation, or PKC down-regulation. The region of NR2A that provides the PKC-induced enhancement of cell death was localized to a discrete segment of the C-terminus. Use of isoform-specific PKC inhibitors showed that Ca(2+)- and lipid-dependent PKC isoforms (cPKCs), specifically PKCbeta1, was responsible for the increase in cell death when phorbol esters were applied prior to NMDA in these cells. PKC activity measured by an in vitro kinase assay was also increased in NR1A/NR2A-transfected HEK cells following NMDA stimulation. These results suggest that PKC acts on the C-terminus of NR2A to accentuate cell death in NR1/NR2A-transfected cells and demonstrate that this effect is mediated by cPKC isoforms. These data indicate that elevation of cellular PKC activity can increase neurotoxicity mediated by NMDA receptor activation.  相似文献   

11.
The positive inotropic activity of the novel cardiotonic DPI 201-106 was investigated in rat and guinea pig isolated hearts. For comparative purposes, the adenylate cyclase stimulant forskolin and the sodium channel agonist veratridine were also evaluated in both species. DPI 201-106 and veratridine produced greater inotropic effects in rat hearts than in guinea pig hearts, whereas forskolin produced comparable effects. In both species the inotropic response to DPI 201-106 and veratridine, but not forskolin, was reversed by the sodium channel antagonist tetrodotoxin. These results confirm that the positive inotropic effect of DPI 201-106 is due to stimulation of the sodium channel and demonstrate for the first time that species differences exist in the inotropic response to this novel cardiotonic drug.  相似文献   

12.
Batrachotoxin, veratridine and aconitine, activators of the voltage-dependent sodium channel in excitable cell membranes, increase the rate of 22Na+ uptake by mouse brain synaptosomes. Batrachotoxin was both the most potent (K0.5, 0.49 microM) and most effective activator of specific 22Na+ uptake. Veratridine (K0.5, 34.5 microM) and aconitine (K0.5, 19.6 microM) produced maximal stimulations of 22Na+ uptake that were 73% and 46%, respectively, of that produced by batrachotoxin. Activation of 22Na+ uptake by veratridine was completely inhibited by tetrodotoxin (I50, 6 nM ), a specific blocker of nerve membrane sodium channels. These results identify appropriate conditions for measuring sodium channel-dependent 22Na+ flux in mouse brain synaptosomes. The pharmacological properties of mouse brain synaptosomal sodium channels described here are distinct from those previously described for sodium channels in rat brain synaptosomes and mouse neuroblastoma cells.  相似文献   

13.
The electrical properties of the clonal muscle cell line L6 can be revealed by the measurement of ion fluxes. Under many circumstances, this technique provides a useful alternative to electro-physiology. In myoblasts, sodium uptake through voltage-dependent ionophores can be stimulated by veratridine and inhibited by tetrodotoxin. In myotubes which result from fusion of myoblasts, these voltage-dependent sodium channels appear to increase in number, paralleling the development of the action potential. Furthermore, in myotubes (but not myoblasts) carbamylcholine is able to stimulate a sodium influx through ionophores which are inhibitable by curare (dTC) but not tetrodotoxin (TTX). This demonstrates the presence of acetylcholine receptors on the fused cells. The cells also have a manganese-inhibitable calcium channel which appears to be voltage dependent and may be responsible for the calcium-dependent component of the action potential. Depolarizing concentrations of potassium in the medium stimulate calcium uptake both in the presence and absence of sodium. Veratridine and carbamylcholine also stimulate calcium influx, but both require the presence of sodium. This indicates that the depolarization necessary for opening the calcium channel is dependent upon sodium influx in these latter cases. Myoblasts and myotubes appear to have these channels in about equal numbers.  相似文献   

14.
The electrical properties of the clonal muscle cell line L6 can be revealed by the measurement of ion fluxes. Under many circumstances, this technique provides a useful alternative to electro-physiology. In myoblasts, sodium uptake through voltage-dependent ionophores can be stimulated by veratridine and inhibited by tetrodotoxin. In myotubes which result from fusion of myoblasts, these voltage-dependent sodium channels appear to increase in number, paralleling the development of the action potential. Furthermore, in myotubes (but not myoblasts) carbamylcholine is able to stimulate a sodium influx through ionophores which are inhibitable by curare (dTC) but not tetrodotoxin (TTX). This demonstrates the presence of acetylcholine receptors on the fused cells. The cells also have a manganese-inhibitable calcium channel which appears to be voltage dependent and may be responsible for the calcium-dependent component of the action potential. Depolarizing concentrations of potassium in the medium stimulate calcium uptake both in the presence and absence of sodium. Veratridine and carbamylcholine also stimulate calcium influx, but both require the presence of sodium. This indicates that the depolarization necessary for opening the calcium channel is dependent upon sodium influx in these latter cases. Myoblasts and myotubes appear to have these channels in about equal numbers.  相似文献   

15.
The syndrome of generalized epilepsy with febrile seizure plus (GEFS+) is associated with a single point mutation on the gene SCN1B that results in a substitution of the cysteine 121 with a tryptophane in the sodium channel beta 1-subunit protein. We have studied, in the HEK cells permanently transfected with the skeletal muscle sodium channel alpha-subunit (SkM1), the effects of a transient transfection of the wild type (WT) or C121W mutant beta 1-subunit. Coexpression of the WT beta 1 produces two effects on the sodium currents expressed in mammalian cells: the increase in the density of sodium channels, and the modulation of the inactivation of the sodium currents, inducing a hastening of the recovery from the inactivation. This modulation is less severe as observed when sodium channels are expressed in frog oocytes. We have observed that mutant C121W lacks this modulatory property, but maintains its property to increase the current density. Our observation suggests a possible involvement of this lack of modulation in the development of the GEFS+, providing the first hypothesis based on the observation of the functional properties of the beta 1-subunit C121W mutant in mammalian cells, which certainly represents a more physiological preparation, instead of in Xenopus oocytes, where the modulatory properties of the beta 1-subunit are artificially amplified.  相似文献   

16.
Several observations suggest an interaction of the sodium channel alpha-subunit with the cytoskeletal structures. However, there is a wide variability in the results of experiments of heterologous expression in Xenopus oocytes and studies on mammalian cells are sometimes contradictory. In general, there has been no direct demonstration that ad hoc large perturbations of the cytoskeleton modify the intrinsic properties of the sodium channels expressed endogenously or heterologously in plasma membranes. We have studied in CHO cells transfected with the rat muscle sodium channel alpha-subunit the effects of two substances expected to produce drastic perturbations of the cytoskeletal structure: Cytochalasin-D, which depolymerizes microfilaments, and Colchicine, which inhibits the microtubules polymerization. We observed no significant differences in the voltage dependence, kinetic parameters and surface density of the expressed sodium channels after treatment of the cells with these substances. We conclude that the two known main components of the cytoskeleton do not interfere directly with the sodium channel function or with the heterologous expression of channels in the cell membrane.  相似文献   

17.
Several observations suggest an interaction of the sodium channel alpha-subunit with the cytoskeletal structures. However, there is a wide variability in the results of experiments of heterologous expression in Xenopus oocytes and studies on mammalian cells are sometimes contradictory. In general, there has been no direct demonstration that ad hoc large perturbations of the cytoskeleton modify the intrinsic properties of the sodium channels expressed endogenously or heterologously in plasma membranes. We have studied in CHO cells transfected with the rat muscle sodium channel alpha-subunit the effects of two substances expected to produce drastic perturbations of the cytoskeletal structure: Cytochalasin-D, which depolymerizes microfilaments, and Colchicine, which inhibits the microtubules polymerization. We observed no significant differences in the voltage dependence, kinetic parameters and surface density of the expressed sodium channels after treatment of the cells with these substances. We conclude that the two known main components of the cytoskeleton do not interfere directly with the sodium channel function or with the heterologous expression of channels in the cell membrane.  相似文献   

18.
A regulatory mechanism for neuronal excitability consists in controlling sodium channel density at the plasma membrane. In cultured fetal neurons, activation of sodium channels by neurotoxins, e.g., veratridine and alpha-scorpion toxin (alpha-ScTx) that enhance the channel open state probability induced a rapid down-regulation of surface channels. Evidence that the initial step of activity-induced sodium channel down-regulation is mediated by internalization was provided by using 125I-alpha-ScTx as both a channel probe and activator. After its binding to surface channels, the distribution of 125I-alpha-ScTx into five subcellular compartments was quantitatively analyzed by EM autoradiography. 125I-alpha-ScTx was found to accumulate in tubulovesicular endosomes and disappear from the cell surface in a time-dependent manner. This specific distribution was prevented by addition of tetrodotoxin (TTX), a channel blocker. By using a photoreactive derivative to covalently label sodium channels at the surface of cultured neurons, we further demonstrated that they are degraded after veratridine-induced internalization. A time-dependent decrease in the amount of labeled sodium channel alpha subunit was observed after veratridine treatment. After 120 min of incubation, half of the alpha subunits were cleaved. This degradation was prevented totally by TTX addition and was accompanied by the appearance of an increasing amount of a 90-kD major proteolytic fragment that was already detected after 45-60 min of veratridine treatment. Exposure of the photoaffinity-labeled cells to amphotericin B, a sodium ionophore, gave similar results. In this case, degradation was prevented when Na+ ions were substituted by choline ions and not blocked by TTX. After veratridine- or amphotericin B-induced internalization of sodium channels, breakdown of the labeled alpha subunit was inhibited by leupeptin, while internalization was almost unaffected. Thus, cultured fetal neurons are capable of adjusting sodium channel density by an activity-dependent endocytotic process that is triggered by Na+ influx.  相似文献   

19.
Ionic channel activity is involved in fundamental cellular behaviour and participates in cancerous features such as proliferation, migration and invasion which in turn contribute to the metastatic process. In this study, we investigated the expression and role of voltage-gated sodium channels in non-small-cell lung cancer cell lines. Functional voltage-gated sodium channels expression was investigated in normal and non-small-cell lung cancer cell lines. The measurement, in patch-clamp conditions, of tetrodotoxin-inhibitable sodium currents indicated that the strongly metastatic cancerous cell lines H23, H460 and Calu-1 possess functional sodium channels while normal and weakly metastatic cell lines do not. While all the cell lines expressed mRNA for numerous sodium channel isoforms, only H23, H460 and Calu-1 cells had a 250 kDa protein corresponding to the functional channel. The other cell lines also had another protein of 230 kDa which is not addressed to the membrane and might act as a dominant negative isoform to prevent channel activation. At the membrane potential of these cells, channels are partially open. This leads to a continuous entry of sodium, disrupting sodium homeostasis and down-stream signaling pathways. Inhibition of the channels by tetrodotoxin was responsible for a 40-50% reduction of in vitro invasion. These experiments suggest that the functional expression of voltage-gated sodium channels might be an integral component of the metastatic process in non-small-cell lung cancer cells probably through its involvement in the regulation of intracellular sodium homeostasis. These channels could serve both as novel markers of the metastatic phenotype and as potential new therapeutic targets.  相似文献   

20.
High and low affinity binding sites for tetrodotoxin have been found in rat skeletal muscle cells in vitro using a radiolabeled tetrodotoxin derivative and 22Na+ flux studies. High affinity binding sites for tetrodotoxin (KD(tetrodotoxin) = 1.6 nM) cannot be detected at the myoblast stage. They appear and increase in density as myoblasts fuse into myotubes to reach a maximum binding capacity of 50 fmol/mg of proteins. Na+ channel structures with a high affinity for tetrodotoxin cannot be activated by neurotoxins specific for the Na+ channel such as veratridine and sea anemone toxinII. They are not expressed in the action potential. Na+ channels with a low affinity for tetrodotoxin (IC50(tetrodotoxin) = 1 microM) are functional since they can be activated by veratridine and sea anemone toxinII. They are already expressed in myoblasts and their density is not modified during the fusion of myoblasts into myotubes; they remain functional throughout the differentiation process. It is suggested that neuronal factors are not required for the synthesis of structures with high affinity binding sites for tetrodotoxin in the rat muscle and that they are only involved for the maturation of these structures from a nonfunctional to a functional form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号