首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Fusion proteins with an alpha-hemolysin (HlyA) C-terminal signal sequence are known to be secreted by the HlyB-HlyD-TolC translocator in Escherichia coli. We aimed to establish an efficient Hly secretory expression system by random mutagenesis of hlyB and hlyD. The fusion protein of subtilisin E and the HlyA signal sequence (HlyA218) was used as a marker protein for evaluating secretion efficiency. Through screening of more than 1.5 × 104 E. coli JM109 transformants, whose hlyB and hlyD genes had been mutagenized by error-prone PCR, we succeeded in isolating two mutants that had 27- and 15-fold-higher levels of subtilisin E secretion activity than the wild type did at 23°C. These mutants also exhibited increased activity levels for secretion of a single-chain antibody-HlyA218 fusion protein at 23 and 30°C but unexpectedly not at 37°C, suggesting that this improvement seems to be dependent on low temperature. One mutant (AE104) was found to have seven point mutations in both HlyB and HlyD, and an L448F substitution in HlyB was responsible for the improved secretion activity. Another mutant (AE129) underwent a single amino acid substitution (G654S) in HlyB. Secretion of c-Myc-HlyA218 was detected only in the L448F mutant (AE104F) at 23°C, whereas no secretion was observed in the wild type at any temperature. Furthermore, for the PTEN-HlyA218 fusion protein, AE104F showed a 10-fold-higher level of secretion activity than the wild type did at 37°C. This result indicates that the improved secretion activity of AE104F is not always dependent on low temperature.  相似文献   

2.
Hemolysin plasmids were constructed with mutations in hlyB, hlyD, or both transport genes. The localization of hemolysin activity and HlyA protein in these mutants was analyzed by biochemical and immunological methods. It was found that mutants defective in hlyB accumulated internal hemolysin, part of which was associated with the inner membrane and was degraded in the late logarithmic growth phase. In an HlyB+ HlyD- mutant, hemolysin was predominantly localized in the membrane compartment. Labeling of these Escherichia coli cells with anti-HlyA antibody indicated that part of HlyA, presumably the C-terminal end but not the pore-forming domains, was already transported to the cellular surface. This finding suggests that HlyB is able to recognize the C-terminal signal of the HlyA protein and to initiate its translocation across the membranes.  相似文献   

3.
The hemolysin transport system was found to mediate the release of cyclodextrin glucanotransferase (CGTase) into the extracellular medium when it was fused to the C-terminal 61 amino acids of HlyA (HlyAs(61)). To produce an improved-secretion variant, the hly components (hlyAs, hlyB and hlyD) were engineered by directed evolution using error-prone PCR. Hly mutants were screened on solid LB-starch plate for halo zone larger than the parent strain. Through screening of about 1 × 10(4) Escherichia coli BL21(DE3) transformants, we succeeded in isolating five mutants that showed a 35-217% increase in the secretion level of CGTase-HlyAs(61) relative to the wild-type strain. The mutation sites of each mutant were located at HlyB, primarily along the transmembrane domain, implying that the corresponding region was important for the improved secretion of the target protein. In this study we describe the finding of novel site(s) of HlyB responsible for enhancing secretion of CGTase in E. coli.  相似文献   

4.
W D Thomas  Jr  S P Wagner    R A Welch 《Journal of bacteriology》1992,174(21):6771-6779
The hydrophobic-rich NH2-terminal 34 amino acids of a tetracycline resistance determinant (TetC) were fused to the COOH-terminal 240 amino acids of the hemolysin transporter, HlyB, which contains a putative ATP-binding domain. This hybrid protein replaced the NH2-terminal 467-amino-acid portion of HlyB and could still export the Escherichia coli hemolysin (HlyA). Export by the hybrid protein was approximately 10% as efficient as transport by HlyB. Extracellular secretion of HlyA by the TetC-HlyB hybrid required HlyD and TolC. The extracellular and periplasmic levels of beta-galactosidase and beta-lactamase in strains that produced the hybrid were similar to the levels in controls. Thus, HlyA transport was specific and did not appear to be due to leakage of cytoplasmic contents alone. Antibodies raised against the COOH terminus of HlyB reacted with the hybrid protein, as well as HlyB. HlyB was associated with membrane fractions, while the hybrid protein was found mainly in soluble extracts. Cellular fractionation studies were performed to determine whether transport by the hybrid occurred simultaneously across both membranes like wild-type HlyA secretion. However, we found that HlyA was present in the periplasm of strains that expressed the TetC-HlyB hybrid. HlyA remained in the periplasm unless the hlyD and tolC gene products were present in addition to the hybrid.  相似文献   

5.
Analysis of the haemolysin secretion system by PhoA-HlyA fusion proteins   总被引:4,自引:0,他引:4  
Summary We studied the efficiency of the pHly152-derived haemolysin transport system using PhoA-HlyA fusion proteins and different constructs which provide HlyB/HlyD in trans. The optimal C-terminal HlyA signal consists of the last 60 amino acids. Longer stretches of HlyA do not improve the transport efficiency of PhoA-HlyA fusion proteins. The introduction of deletions and/or replacements in the 60 amino acid HlyA signal domain revealed at least three functional regions with different degrees of specificity. Amino acids 1–21 (numbered from the N-terminal part of the 60 amino acid HlyA signal), termed region I, could be replaced by a Pro-containing peptide. The other two regions II and III (amino acids 22–40 and 41–60, respectively) seem to interact directly with the HlyB/HlyD translocator since a PhoA fusion protein which contains either of the two regions was still secreted in a HlyB/HlyD-dependent mode, albeit at low efficiency. An efficient trans-complementing HlyB/HlyD system was only obtained from the pHLy152-encoded hly determinant when the regulatory hlyR element was provided in cis. Secretion of the PhoA-HlyA fusion protein did not interfere with the secretion of HlyA even when the fusion protein was induced to a high level. This suggests that the capacity of the HlyB/HlyD translocation system is high and not normally saturated by its natural HlyA substrate.Dedicated to Prof., Dr. F. Lingens on the occasion of his 65th birthday  相似文献   

6.
Secretion of haemolysin (HlyA) is secA independent, but depends upon two accessory membrane proteins, HlyB and HlyD, encoded by the hly determinant. A fourth (cytoplasmic) protein, HlyC, is required to activate HlyA post-translationally, but has no role in export. Deletion studies have previously shown that the HlyA molecule contains a targeting signal close to the C-terminus which specifically directs its secretion to the medium. This targeting signal has been variously located within the terminal 27, 53, 60 or 113 amino acids. In this paper, we have sought to confirm the presence of a C-terminal targeting signal and to analyse the specificity of the Hly transport system through fusion of C-terminal fragments of HlyA to heterologous polypeptides. A C-terminal fragment (23 kDa) of HlyA, when fused at the C-terminus, efficiently promoted the secretion of the eukaryotic protein prochymosin (PCM) to the medium via HlyB and HlyD. This result is in contrast to previous findings that prochymosin, preceded by the alkaline phosphatase signal sequence, cannot be translocated across the Escherichia coli inner membrane. The HlyA targeting domain was also used to secrete to the medium varying portions of chloramphenicol acetyltransferase (CAT) and 98 per cent of the beta-galactosidase (LacZ) molecule (both E. coli cytoplasmic proteins). In the case of the PCM and CAT fusions the efficiency of secretion was reduced as the proportion of the PCM and CAT molecule increased. This result is consistent with inhibition of secretion through the irreversible folding of the larger passenger protein fragments, or the occlusion of the HlyA targeting signal by upstream sequences. Analysis of the nature of the C-terminal domain promoting secretion of prochymosin, demonstrated that shortening the signal domain from 218 to 113 amino acids significantly reduced the efficiency of secretion. This result may also reflect the importance of maintaining an independently folded signal motif well separated from a passenger domain.  相似文献   

7.
A member of the family of RTX toxins, Escherichia coli haemolysin A, is secreted from Gram-negative bacteria. It carries a C-terminal secretion signal of approximately 50 residues, targeting the protein to the secretion or translocation complex, in which the ABC-transporter HlyB is a central element. We have purified the nucleotide-binding domain of HlyB (HlyB-NBD) and a C-terminal 23kDa fragment of HlyA plus the His-tag (HlyA1), which contains the secretion sequence. Employing surface plasmon resonance, we were able to demonstrate that the HlyB-NBD and HlyA1 interact with a K(D) of approximately 4 microM. No interaction was detected between the HlyA fragment and unrelated NBDs, OpuAA, involved in import of osmoprotectants, and human TAP1-NBD, involved in the export of antigenic peptides. Moreover, a truncated version of HlyA1, lacking the secretion signal, failed to interact with the HlyB-NBD. In addition, we showed that ATP accelerated the dissociation of the HlyB-NBD/HlyA1 complex. Taking these results together, we propose a model for an early stage of initiation of secretion in vivo, in which the NBD of HlyB, specifically recognizes the C terminus of the transport substrate, HlyA, and where secretion is initiated by subsequent displacement of HlyA from HlyB by ATP.  相似文献   

8.
Extra- and intracellular Escherichia coli hemolysin expressed by two cloned hly determinants, both under the control of the activator element hlyR, were analyzed. One determinant carried all four hly genes (hlyC, hlyA, hlyB, and hlyD), whereas the other carried only the two genes (hlyC and hlyA) required for synthesis of active hemolysin but not those essential for its secretion. It was shown that the total amounts of HlyA protein and of hemolytic activity are similar in both cases in logarithmically growing cultures. The E. coli strain carrying the complete hly determinant released most hemolysin into the media and accumulated very little HlyA intracellularly. The active extracellular hemolysin (HlyA*) was inactivated in the stationary phase without degradation of the HlyA protein. In contrast, the hemolysin which accumulated intracellularly in the E. coli strain carrying hlyA and hlyC only was proteolytically degraded at the end of the logarithmic growth phase. Immunogold labeling indicates that active intracellular HlyA bound preferentially to the inner membrane, whereas that part of the extracellular HlyA which remained cell-bound was located exclusively at the cell surface. It was shown by fluorescence-activated cell sorter analysis that active extra- and intracellular HlyA* bound with similar efficiency to erythrocytes, whereas hemolytically inactive HlyA protein did not bind to these target cells.  相似文献   

9.
The prokaryotic hlyB gene product is a member of a superfamily of ATP-binding transport proteins that include the eukaryotic multidrug-resistance P-glycoprotein, the yeast STE6, and the cystic fibrosis CFTR gene products (Juranka, P. F., Zastawny, R. L., and Ling, V. (1989) FASEB J. 3, 2583-2592). Previous genetic studies have indicated that HlyB is involved in the transport of the 107-kDa HlyA protein from Escherichia coli; however, the HlyB protein has not been purified for biochemical studies due to its low abundance. In this study, we have engineered a monoclonal antibody epitope into the C-terminal end of HlyB that did not destroy its function. This has allowed us to use immunological methods to identify and localize various molecular forms of the HlyB protein present in vivo.  相似文献   

10.
El Tor strains of Vibrio cholerae are capable of producing a haemolysin which they actively secrete into the growth medium. This requires translation to produce the protein at the surface of the cytoplasmic membrane and translocation across this membrane, the periplasmic space and the outer membrane. The mechanism by which this occurs is poorly understood. In addition to the structural gene for the haemolysin (hlyA), we have cloned a second adjacent gene, hlyB. By site-directed mutagenesis, specific hlyB mutants have been constructed. These mutants are defective in the secretion of HlyA in the early to mid-exponential phase of growth and the haemolysin becomes trapped within the cell and is only released in stationary phase. Nucleotide sequence analysis and cell fractionations reveal HlyB to be a 60.3 kD putative outer membrane-associated protein.  相似文献   

11.
Summary Alkaline phosphatase (AP) is secreted into the medium when the carboxy-terminal 25 amino acids are replaced by the 60 amino acid carboxy-terminal signal peptide (HlyAs) ofEscherichia coli haemolysin (HlyA). Secretion of the AP-HlyAs fusion protein is dependent on HlyB and HlyD but independent of SecA and SecY. The efficiency of secretion by HlyB/HlyD is decreased when AP carries its own N-terminal signal peptide. Translocation of this fusion protein into the periplasm is not observed even in the absence of HlyB/HlyD. The failure of the Sec export machinery to transport the latter protein into the periplasm seems to be due in part to the loss of the carboxy-terminal sequence of AP since even AP derivatives which do not carry the HlyA signal peptide but lack the 25 C-terminal amino acids of AP are localized in the membrane but not translocated into the periplasm.  相似文献   

12.
Topological and functional studies on HlyB of Escherichia coli   总被引:4,自引:0,他引:4  
Summary The topology of HlyB, a protein located in the inner membrane of Escherichia coli and involved in the secretion of -haemolysin (HlyA), was determined by the generation of HlyB-PhoA and HlyB-LacZ fusion proteins. The data obtained by this biochemical method together with computer predictions suggest that HlyB is inserted in the cytoplasmic membrane by six stable hydrophobic, -helical transmembrane segments. These segments extend from amino acid positions 158 to 432 of HlyB. The cytoplasmic loops between these transmembrane segments are relatively large and carry an excess of positively charged amino acids, while the periplasmic loops are rather small. In addition to these six transmembrane segments, two additional regions in the 78 N-terminal amino acids of HlyB appear to be also inserted in the cytoplasmic membrane. However, the association of these two segments with the cytoplasmic membrane seems to be less tight, since active PhoA and LacZ fusions were obtained by insertion into the same positions of these segments. A LacZ-HlyAs fusion protein carrying, at the C-terminus of LacZ, the 60-amino acid signal sequence of HlyA was not secreted in the presence of HlyB/HlyD. However, transport of this fusion protein into the cytoplasmic membrane appeared to be initiated, as suggested by the tight association of this protein with the inner membrane. A similar close association of LacZ-HlyAs with the inner membrane was also observed in the presence of HlyB alone but not in its absence. These data suggest that HlyB recognizes the HlyA signal sequence and initiates the transport of HlyA into the membrane.  相似文献   

13.
In the secretion of polypeptides from Gram-negative bacteria, the outer membrane constitutes a specific barrier which has to be circumvented. In the majority of systems, secretion is two-step process, with initial export to the periplasm involving an N-terminal signal sequence. Transport across the outer membrane then involves a variable number of ancillary polypeptides including both periplasmic and outer membrane. While such ancillary proteins are probably specific for each secreted protein, the mechanism of movement across the outer membrane is unknown. In contrast to these systems, secretion of theE. coli hemolysin (HlyA) has several distinctive features. These include a novel targeting signal located within the last 50 or so C-terminal amino acids, the absence of any periplasmic intermediates in transfer, and a specific membrane-bound translocator, HlyB, with important mammalian homologues such as P-glycoprotein (Mdr) and the cystic fibrosis protein. In this review we discuss the nature of the HlyA targeting signal, the structure and function of HlyB, and the probability that HlyA is secreted directly to the medium through a trans-envelope complex composed of HlyB and HlyD.  相似文献   

14.
The relatively simple type 1 secretion system in Gram-negative bacteria is nevertheless capable of transporting polypeptides of up to 800 kDa across the cell envelope in a few seconds. The translocator is composed of an ABC-transporter, providing energy through ATP hydrolysis (and perhaps the initial channel across the inner membrane), linked to a multimeric Membrane Fusion Protein (MFP) spanning the initial part of the periplasm and forming a continuous channel to the surface with an outer membrane trimeric protein. Proteins targeted to the translocator carry an (uncleaved), poorly conserved secretion signal of approximately 50 residues. In E. coli the HlyA toxin interacts with both the MFP (HlyD) and the ABC protein HlyB, (a half transporter) triggering, via a conformational change in HlyD, recruitment of the third component, TolC, into the transenvelope complex. In vitro, HlyA, through its secretion signal, binds to the nucleotide binding domain (NBD or ABC-ATPase) of HlyB in a reaction reversible by ATP that may mimic initial movement of HlyA into the translocation channel. HlyA is then transported rapidly, apparently in an unfolded form, to the cell surface, where folding and release takes place. Whilst recent structural studies of TolC and MFP-like proteins are providing atomic detail of much of the transport path, structural analysis of the HlyB NBD and other ABC ATPases, have revealed details of the catalytic cycle within an NBD dimer and a glimpse of how the action of HlyB is coupled to the translocation of HlyA.  相似文献   

15.
The relatively simple type 1 secretion system in gram-negative bacteria is nevertheless capable of transporting polypeptides of up to 800 kDa across the cell envelope in a few seconds. The translocator is composed of an ABC-transporter, providing energy through ATP hydrolysis (and perhaps the initial channel across the inner membrane), linked to a multimeric Membrane Fusion Protein (MFP) spanning the initial part of the periplasm and forming a continuous channel to the surface with an outer membrane trimeric protein. Proteins targeted to the translocator carry an (uncleaved), poorly conserved secretion signal of approximately 50 residues. In E. coli the HlyA toxin interacts with both the MFP (HlyD) and the ABC protein HlyB, (a half transporter) triggering, via a conformational change in HlyD, recruitment of the third component, TolC, into the transenvelope complex. In vitro, HlyA, through its secretion signal, binds to the nucleotide binding domain (NBD or ABC-ATPase) of HlyB in a reaction reversible by ATP that may mimic initial movement of HlyA into the translocation channel. HlyA is then transported rapidly, apparently in an unfolded form, to the cell surface, where folding and release takes place. Whilst recent structural studies of TolC and MFP-like proteins are providing atomic detail of much of the transport path, structural analysis of the HlyB NBD and other ABC ATPases, have revealed details of the catalytic cycle within an NBD dimer and a glimpse of how the action of HlyB is coupled to the translocation of HlyA.  相似文献   

16.
The release of haemolysin from Escherichia coli involves direct secretion across both the inner and outer membranes. Secretion of HlyA is dependent upon a specific membrane export complex composed of HlyB, -D and possibly TolC. HlyA is targeted to the medium via the membrane translocation complex, by a novel C-terminal secretion signal. Previous studies involving deletion and fusion analyses have given contradictory results for the minimal length (20-60 residues) of this HlyA signal region and little is known of the nature of the specific residues and structural features required for function. In this study we have analysed, quantitatively, the effect upon secretion of many point mutations introduced into the HlyA C-terminus. The results indicate the presence of a minimal secretion signal domain whose proximal boundary extends to at least residue -46 and which contains at least four individual residues essential for maximal secretion levels. We propose that such residues act co-operatively, forming multiple contact points with the translocator proteins, with the 'best fit' promoting maximal levels of secretion.  相似文献   

17.
The extracellular alkaline protease produced by Pseudomonas aeruginosa is secreted by a specific pathway, independent of the pathway used by most of the other extracellular proteins of this organism. Secretion of this protease is dependent on the presence of several genes located adjacent to the apr gene. Complementation studies have shown that PrtD, E, and F, the three secretion functions for Erwinia chrysanthemi proteases B and C (Létoffé et al., 1990), can mediate the secretion of the alkaline protease by Escherichia coli. The secretion functions involved in alpha-haemolysin secretion in E. coli (hlyB, hlyD, tolC) can also be used to complement alkaline protease secretion by E. coli, although less efficiently. These data indicate that protease secretion mechanisms in Pseudomonas and Erwinia are very similar and are homologous to that of E. coli alpha-haemolysin.  相似文献   

18.
In this paper we show the construction of a plasmid pLG609 which carries the 3'-end of the haemolysin structural gene, hlyA under tac promoter control. Expression of pLG609 in an E. coli strain carrying the haemolysin export genes hlyB and hlyD led to the efficient secretion of the C-terminal, 23 kDa peptide of haemolysin. The discovery of a C-terminal topogenic sequence, which appears to be all that is required for secretion of the whole toxin, is so far quite unique in protein export.  相似文献   

19.
The extracellular calmodulin-sensitive adenylate cyclase produced by Bordetella pertussis is synthesized as a 215-kDa precursor. This polypeptide is transported to the outer membrane of the bacteria where it is proteolytically processed to a 45-kDa catalytic subunit which is released into the culture supernatant [Masure, H.R., & Storm, D.R. (1989) biochemistry 28, 438-442]. The gene encoding this enzyme, cyaA, is part of the cya operon that also includes the genes cyaB, cyaD, and cyaE. A comparison of the predicted amino acid sequences encoded by cyaA, cyaB, and cyaD with the amino acid sequences encoded by hlyA, hlyB, and hlyD genes from the hemolysin (hly) operon from Escherichia coli shows a large degree of sequence similarity [Glaser, P., Sakamoto, H., Bellalou, J., Ullmann, A., & Danchin, A. (1988) EMBO J. 7, 3997-4004]. Complementation studies have shown that HlyB and HlyD are responsible for the secretion of HlyA (hemolysin) from E. coli. The signal sequence responsible for secretion of hemolysin has been shown to reside in its C-terminal 27 amino acids. Similarly, CyaB, CyaD, and CyaE are required for the secretion of CyaA from Bordetella pertussis. We placed the cyaA gene and a truncated cyaA gene that lacks the nucleotides that code for a putative C-terminal secretory signal sequence under the control of the lac promoter in the plasmid pUC-19. These plasmids were transformed into strains of E. coli which contained the hly operon. The truncated cyaA gene product, lacking the putative signal sequence, was not secreted but accumulated inside the cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In this paper the DNA sequence of the cloned hlyC gene from E. coli 2001 is presented. The gene encodes a protein of 20 kDa which is able to activate the 107 kDa polypeptide encoded by hlyA. This gives rise to a haemolytically active protein which differs from the inactive form in stability and by its migration when analysed by polyacrylamide gel electrophoresis under non-denaturing conditions. We also show that the inactive form is secreted in the presence of the transport functions hlyB and hlyD. This result rules out any role for the hlyC gene product in the transport of HlyA across the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号