首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothermal-isobaric molecular dynamics simulations are used to calculate the specific volume of models of trehalose and three amorphous trehalose-water mixtures (2.9%, 4.5% and 5.3% (w/w) water, respectively) as a function of temperature. Plots of specific volume versus temperature exhibit a characteristic change in slope when the amorphous systems change from the glassy to the rubbery state and the intersection of the two regression lines provides an estimate of the glass transition temperature T(g). A comparison of the calculated and experimental T(g) values, as obtained from differential scanning calorimetry, shows that despite the predicted values being systematically higher (about 21-26K), the trend and the incremental differences between the T(g) values have been computed correctly: T(g)(5.3%(w/w))相似文献   

2.
We report on room temperature electron transfer in the reaction center (RC) complex purified from Rhodobacter sphaeroides. The protein was embedded in trehalose-water systems of different trehalose/water ratios. This enabled us to get new insights on the relationship between RC conformational dynamics and long-range electron transfer. In particular, we measured the kinetics of electron transfer from the primary reduced quinone acceptor (Q(A)(-)) to the primary photo oxidized donor (P(+)), by time-resolved absorption spectroscopy, as a function of the matrix composition. The composition was evaluated either by weighing (liquid samples) or by near infrared spectroscopy (highly viscous or solid glasses). Deconvolution of the observed, nonexponential kinetics required a continuous spectrum of rate constants. The average rate constant ( = 8.7 s(-1) in a 28% (w/w) trehalose solution) increases smoothly by increasing the trehalose/water ratio. In solid glasses, at trehalose/water ratios > or = 97%, an abrupt increase is observed ( = 26.6 s(-1) in the driest solid sample). A dramatic broadening of the rate distribution function parallels the above sudden increase. Both effects fully revert upon rehydration of the glass. We compared the kinetics observed at room temperature in extensively dried water-trehalose matrices with the ones measured in glycerol-water mixtures at cryogenic temperatures and conclude that, in solid trehalose-water glasses, the thermal fluctuations among conformational substates are inhibited. This was inferred from the large broadening of the rate constant distribution for electron transfer obtained in solid glasses, which was due to the free energy distribution barriers having become quasi static. Accordingly, the RC relaxation from dark-adapted to light-adapted conformation, which follows primary charge separation at room temperature, is progressively hindered over the time scale of P(+)Q(A)(-) charge recombination, upon decreasing the water content. In solid trehalose-water glasses the electron transfer process resulted much more affected than in RC dried in the absence of sugar. This indicated a larger hindering of the internal dynamics in trehalose-coated RC, notwithstanding the larger amount of residual water present in comparison with samples dried in the absence of sugar.  相似文献   

3.
Is trehalose special for preserving dry biomaterials?   总被引:24,自引:0,他引:24       下载免费PDF全文
L M Crowe  D S Reid    J H Crowe 《Biophysical journal》1996,71(4):2087-2093
Simple sugars, especially disaccharides, stabilize biomaterials of various composition during air-drying or freeze-drying. We and others have provided evidence that direct interaction, an interaction that we believe is essential for the stabilization, between the sugar and polar groups in, for example, proteins and phospholipids occurs in the dry state. Some researchers, however, have suggested that the ability of the sugar to form a glass is the only requirement for stabilization. More recently, we have shown that both glass formation and direct interaction of the sugar and headgroup are often required for stabilization. In the present study, we present a state diagram for trehalose glass and suggest that the efficacy of this sugar for stabilization may be related to its higher glass transition temperatures at all water contents. We also show that trehalose and trehalose:liposome preparations form trehalose dihydrate as well as trehalose glass when rehydrated with water vapor. Formation of the dihydrate sequesters water, which might otherwise participate in lowering the glass transition temperature to below ambient. Because samples remain in the glassy state at ambient temperatures, viscosity is high and fusion between liposomes is prevented.  相似文献   

4.
Long-term storage of desiccated nucleated mammalian cells at ambient temperature may be accomplished in a stable glassy state, which can be achieved by removal of water from the biological sample in the presence of glass-forming agents including trehalose. The stability of the glass may be compromised due to a nonuniform distribution of residual water and trehalose within and around the desiccated cells. Thus, quantification of water and trehalose contents at the single-cell level is critical for predicting the glass formation and stability for dry storage. Using Raman microspectroscopy, we estimated the trehalose and residual water contents in the microenvironment of spin-dried cells. Individual cells with or without intracellular trehalose were embedded in a solid thin layer of extracellular trehalose after spin-drying. We found strong evidence suggesting that the residual water was bound at a 2:1 water/trehalose molar ratio in both the extracellular and intracellular milieus. Other than the water associated with trehalose, we did not find any more residual water in the spin-dried sample, intra- or extracellularly. The extracellular trehalose film exhibited characteristics of an amorphous state with a glass transition temperature of ∼22°C. The intracellular milieu also dried to levels suitable for glass formation at room temperature. These findings demonstrate a method for quantification of water and trehalose in desiccated specimens using confocal Raman microspectroscopy. This approach has broad use in desiccation studies to carefully investigate the relationship of water and trehalose content and distribution with the tolerance to drying in mammalian cells.  相似文献   

5.
The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (< 50 °C), the enzymatic activity of the protein strongly decreased during storage at 60 °C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20 °C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominately determines stability at higher glass transition temperatures.  相似文献   

6.
Physico-chemical properties of the trehalose-water system are reviewed with special reference to the transformations that may shed light on the mechanism of trehalose bio-protection. Critical analysis of solution thermodynamics is made in order to scrutinize trehalose properties often called 'anomalous' and to check the consistency of literature results. Discussion on the conversion between the solid state polymorphic forms is given, with a special emphasis of the transformations involving the newly identified anhydrous crystalline form of alpha,alpha-trehalose, TRE(alpha). This exotic crystal is almost 'isomorphous' with the dihydrate crystal structure, and possesses the unique feature of reversibly absorbing water to produce the dihydrate, without changing the main structural features. The reversible process could play a functional role in the well-known ability of this sugar to protect biological structures from damage during desiccation. The final aim of the paper is to add some new insights into and to reconcile previous hypotheses for the peculiar 'in vivo' action of trehalose.  相似文献   

7.
In this study, the collapse temperature was determined using the freeze‐drying microscopy (FDM) method for a variety of cell culture medium‐based solutions (with 0.05–0.8 M trehalose) that are important for long‐term stabilization of living cells in the dry state at ambient temperature (lyopreservation) by freeze‐drying. Being consistent with what has been reported in the literature, the collapse temperature of binary water‐trehalose solutions was found to be similar to the glass transition temperature (Tg ~ ?30°C) of the maximally freeze‐concentrated trehalose solution (~80 wt% trehalose) during the freezing step of freeze‐drying, regardless of the initial concentration of trehalose. However, the effect of the initial trehalose concentration on the collapse temperature of the cell culture medium‐based trehalose solutions was identified to be much more significant, particularly when the trehalose concentration is less than 0.2 M (the collapse temperature can be as low as ?65°C). We also determined that cell density from 1 to 10 million cells/mL and ice seeding at high subzero temperatures (?4 and ?7°C) have negligible impact on the solution collapse temperature. However, ice seeding does significantly affect the ice crystal morphology formed during the freezing step and therefore the drying rate. Finally, bulking agents (mannitol) could significantly affect the collapse temperature only when trehalose concentration is low (<0.2 M). However, improving the collapse temperature by using a high concentration of trehalose might be preferred to the addition of bulking agents in the solutions for freeze‐drying of living cells. We further confirmed the applicability of the collapse temperature measured with small‐scale (2 µL) samples using the FDM system to freeze‐drying of large‐scale (1 mL) samples using scanning electron microscopy (SEM) data. Taken together, the results reported in this study should provide useful guidance to the development of optimal freeze‐drying protocols for lyopreservation of living cells at ambient temperature for easy maintenance and convenient wide distribution to end users, which is important to the eventual success of modern cell‐based medicine. Biotechnol. Bioeng. 2010;106: 247–259. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Trehalose is believed to offer desiccation protection to mammalian cells by forming stable glassy matrices. The goal of the current study was to explore the desiccation kinetics of thin films of trehalose-water solution under forced and natural convective conditions and to investigate the thermophysical state of mammalian cells at the bottom of the thin film. We developed a finite difference model based on the mass and energy conservation equations coupled to the water transport model from the cells. The boundary conditions were obtained from correlations or experimental measurements and the Gordon-Taylor equation was used to predict the glass transition temperature at every location. Results indicated that there are three distinct regimes for drying for both forced and natural convection, characterized by the slope of the moisture content plot as a function of time. Our results also indicate that the surface of the solution reached the glassy state in less than 10 min for the Reynolds (forced) numbers explored and approximately 30 min for some Rayleigh (natural convective) numbers; however, significant water was trapped at this instant. Larger drying force hastened quicker glass formation but trapped more water. The numerical model was capable of predicting the drying kinetics for the dilute region accurately, but deviated while predicting the other regimes. Based on these experimental validations of the model, the osmotic response of different cells located at the bottom of the solution with orders of magnitude difference in their membrane permeability (Lp) was predicted. The results suggested that extracellular glass formed around cells at the bottom of a trehalose-water solution by the propagation of glass into the solution; however it takes more than an order of magnitude time (approximately 7 min to >100 min for forced convective drying) to remove sufficient water to form glass around cells from the time when the first surface glass is formed. This is attributed to low diffusivity of water through the glass. In addition, the water transport from the glassy matrix could be either diffusion or Lp limited. For diffusion-limited transport, lowering the film thickness at the beginning of drying by half almost lowers the drying time by an order of magnitude. In summary, the optimal design of convective desiccation protocols requires accounting for the size of the cell, their membrane permeability (Lp) and the starting thickness of the solution.  相似文献   

9.
Sitaula R  Bhowmick S 《Cryobiology》2006,52(3):369-385
The goal of the study was to quantify the thermophysical properties and the moisture sorption characteristics of the trehalose-PBS (phosphate-buffered saline) from the desiccation preservation perspective. A moisture sorption study was undertaken to determine the desorption isotherms of the trehalose-PBS mixtures. The Brunauer, Emmett, and Teller (BET)-equation and the Guggenheim, Anderson, and de Boer equation were used to quantify the desorption data. The glass transition temperature of the mixtures of trehalose-PBS, equilibrated at different relative humidities was studied using a differential scanning calorimeter. Fourier transform infrared spectroscopy was used to study the molecular interaction between the trehalose and PBS mixtures. The results showed that the addition of PBS to the trehalose mixture causes a shift from the type II isotherm to a type III isotherm (characterized by BET equation) which may have detrimental effect on cell desiccation. The results showed that an increase in PBS mass fraction in the trehalose-PBS mixture causes a decrease in the glass transition temperature (Tg) of the mixture and also a decrease in the hydrogen bonding capacity of the trehalose glasses. The addition of PBS to trehalose posed some challenges and should be subject to further optimization to use it in desiccation preservation of biologics.  相似文献   

10.
The purpose of this study was to investigate the combined effects of trehalose and cations on the preservation of beta-galactosidase in freeze-dried systems and their relationship to physical properties. Differential scanning calorimetry was employed to measure the glass transition temperature (T(g)) and the endothermal peak area, related to the amount of crystalline trehalose dihydrate present in the samples. In systems in which the trehalose matrix was humidified to conditions which allowed a high proportion of trehalose to crystallize, the enzyme was rapidly inactivated upon heating at 70 degrees C. In these conditions the addition of CsCl, NaCl and particularly KCl or MgCl(2), improved the enzyme stability with respect to that observed in matrices containing only trehalose. For a given moisture content, addition of salts produced very little change on the glass transition temperature; therefore the protective effect could not be attributed to a higher T(g) value. The crystallization of trehalose dihydrate in the humidified samples was delayed in the trehalose/salt systems (principally in the presence of Mg(2+)) and a parallel improvement of enzyme stability was observed.  相似文献   

11.
The possibility to amorphize anhydrous crystalline sugars, like lactose, trehalose and glucose, by mechanical milling was previously reported. We test here the possibility to amorphize the corresponding crystalline hydrates: lactose monohydrate, trehalose dihydrate and glucose monohydrate using fully identical milling procedures. The results show that only the first hydrate amorphizes while the other two remain structurally invariant. These different behaviours are attributed to the plasticizing effect of the structural water molecules which can decrease the glass transition temperature below the milling temperature. The results reveal clearly the fundamental role of the glass transition in the solid-state amorphization process induced by milling, and they also explain why crystalline hydrates are systematically more difficult to amorphize by milling than their anhydrous counterpart. The investigations have been performed by differential scanning calorimetry and powder X-ray diffraction.  相似文献   

12.
In this paper, molecular dynamics simulation was carried out to investigate the thermomechanical properties of cross-linked epoxy resin. The glass transition temperature, coefficients of thermal and moisture expansion, mechanical property parameters and so on are studied with the influence of temperature, water concentration and polymer conversion taken into account. The simulation results were in good agreement with existing experimental data.  相似文献   

13.
We report investigations on the properties of nanoenvironments around single-GFP-mut2 proteins in trehalose-water matrixes. Single-GFPmut2 molecules embedded in thin trehalose-water films were characterized in terms of their fluorescence brightness, bleaching dynamics, excited state lifetime, and fluorescence polarization. For each property, sets of approximately 100-150 single molecules have been investigated as a function of trehalose content and hydration. Three distinct and interconverting families of proteins have been found which differ widely in terms of bleaching dynamics, brightness, and fluorescence polarization, whose relative populations sizably depend on sample hydration. The reported results evidence the simultaneous presence of different protein-trehalose-water nanostructures whose rigidity increases by lowering the sample hydration. Such spatial inhomogeneity is in line with the well-known heterogeneous dynamics in supercooled fluids and in nonsolid carbohydrate glasses and gives a pictorial representation of the sharp, sudden reorganization of the above structures after uptake <==>release of water molecules.  相似文献   

14.
In this contribution the effects of the homologous disaccharides trehalose and sucrose on both water and hydrated lysozyme dynamics are considered by determining the mean square displacement (MSD) from elastic incoherent neutron scattering (EINS) experiments. The self-distribution function (SDF) procedure is applied to the data collected, by use of IN13 and IN10 spectrometers (Institute Laue Langevin, France), on trehalose and sucrose aqueous mixtures (at a concentration corresponding to 19 water molecules per disaccharide molecule), and on dry and hydrated (H2O and D2O) lysozyme also in the presence of the disaccharides. As a result, above the glass transition temperature of water, the MSD of the water–trehalose system is lower than that of the water–sucrose system. This result suggests that the hydrogen-bond network of the water–trehalose system is stronger than that of the water–sucrose system. Furthermore, by taking into account instrumental resolution effects it was found that the system relaxation time of the water–trehalose system is longer than that of the water–sucrose system, and the system relaxation time of the protein in a hydrated environment in the presence of disaccharides increases sensitively. These results explain the higher bioprotectant effectiveness of trehalose. Finally, the partial MSDs of sucrose/water and trehalose/water have been evaluated. It clearly emerges from the analysis that these are almost equivalent in the low-Q domain (0–1.7 ?−1) but differ substantially in the high-Q range (1.7–4 ?−1). These findings reveal that the lower structural sensitivity of trehalose to thermal changes is connected with the local spatial scale.  相似文献   

15.
Trehalose is believed to have the ability to protect some organisms against low temperatures. To clarify the cryoprotective mechanism of trehalose, the structure and the phase behavior of fully hydrated dihexadecylphosphatidylcholine (DHPC) membranes in the presence of various concentrations of trehalose were studied by means of differential scanning calorimetry (DSC), static x-ray diffraction, and simultaneous x-ray diffraction and DSC measurements. The temperature of the interdigitated gel (Lbeta(i))-to-ripple (Pbeta') phase transition of DHPC decreases with a rise in trehalose concentration up to approximately 1.0 M. Above a trehalose concentration of approximately 1.0 M, no Lbeta(i) phase is observed. In this connection, the electron density profile calculated from the lamellar diffraction data in the presence of 1.6 M trehalose indicates that DHPC forms noninterdigitated bilayers below the P beta' phase. It was concluded that trehalose destabilizes the Lbeta(i) phase of DHPC bilayers. This suggests that trehalose reduces the area at the interface between the lipid and water. The relation between this effect of trehalose and a low temperature tolerance was discussed from the viewpoint of cold-induced denaturation of proteins.  相似文献   

16.
Vitrification of sugar-based solutions plays an important role in cryopreservation, lyophilization, and the emerging field of anhydrous preservation. An understanding of the glass transition characteristics of such formulations is essential for determining an appropriate storage temperature to ensure an extended shelf life of vitrified products. To better understand the effect of salts on the glass transition temperature (Tg) of glass-forming sugars, we investigated several data-fitting models (Fox, Gordon–Taylor and Kwei) for sugar–salt formulations using data from the literature, as well as new data generated on blends of trehalose and choline dihydrogen phosphate (CDHP). CDHP has recently been shown to have promise as a stabilizing agent for proteins and DNA. The Kwei equation, which has a specific parameter characterizing intermolecular interactions, provides good fits to the Tg data for sugar–salt blends, and complements other commonly used models that are frequently used to model Tg data.  相似文献   

17.
Trehalose is the most effective carbohydrate in preserving the structure and function of biological systems during dehydration and subsequent storage. We have studied the kinetics of protein inactivation in amorphous glucose/sucrose (1:10, w/w) and glucose/trehalose (1:10, w/w) systems, and examined the relationship between protein preservation, phase separation and crystallization during dry storage. The glucose/trehalose system preserved glucose-6-phosphate dehydrogenase better than did the glucose/sucrose system with the same glass transition temperature (Tg). The Williams-Landel-Ferry kinetic analysis indicated that the superiority of the glucose/trehalose system over the glucose/sucrose system was possibly associated with a low free volume and a low free volume expansion at temperatures above the Tg. Phase separation and crystallization during storage were studied using differential scanning calorimetry, and three separate domains were identified in stored samples (i.e., sugar crystals, glucose-rich and disaccharide-rich amorphous domains). Phase separation and crystallization were significantly retarded in the glucose/trehalose system. Our data suggest that the superior stability of the trehalose system is associated with several properties of the trehalose glass, including low free volume, restricted molecular mobility and the ability to resist phase separation and crystallization during storage.  相似文献   

18.
The role of the solvent matrix in affecting CO bound to ferrous horseradish peroxidase was examined by comparing band-widths of nu(CO) for the protein in aqueous solutions and in trehalose/sucrose glasses. We have previously observed that the optical absorption band and the CO stretching mode respond to the glass transition of glycerol/water in ways that depend upon the presence of substrate (Biochemistry 40 (2001) 3483). It is now demonstrated that the CO group band-width for the protein with bound inhibitor benzhydroxamic acid is relatively insensitive to temperature or the glass transition of the solvent. In contrast, in the absence of inhibitor, the band-width varies with the temperature that the glass is formed. The results show that solvent dependent and independent motions can be distinguished, and that the presence of substrate changes the protein such that the Fe[bond]CO site is occluded from the solvent conditions. Molecular dynamic calculations, based upon X-ray structures, showed that the presence of benzhydroxamic acid decreases the distance between His42 and Arg38 and this leads for closer distances to the O of the CO from these residues. These results are invoked to account for the observed line width changes of the CO band.  相似文献   

19.
Differential scanning calorimetry thermograms of various samples of commercial instant active dry yeasts revealed a clear glass transition typical of amorphous carbohydrates and sugars. The resulting glass transition temperatures were found to decrease with increasing moisture content. The observed glass curve was similar to that of pure trehalose, which is known to accumulate in large amounts in baker's yeast. The effect of heat treatment at various temperatures on the fermentative activity (as measured by the metabolic production of CO(2)) of dry yeast was studied. First-order plots were obtained representing the loss of fermentative activity as a function of heating time at the various temperatures assayed. Significant losses of fermentative activity were observed in vitrified yeast samples. The dependence of rate constants with temperature was found to follow Arrhenius behavior. The relationship between the loss of fermentative activity and glass transition was not verified, and the glass transition was not reflected on the temperature dependence of fermentative activity loss.  相似文献   

20.
Sugars are known to stabilize proteins. This study addresses questions of the nature of sugar and proteins incorporated in solid sugar films. Infrared (IR) and Raman spectroscopy was used to examine trehalose and sucrose films and glycerol/water solvent. Proteins and indole-containing compounds that are imbedded in the sugar films were studied by IR and optical (absorption, fluorescence, and phosphorescence) spectroscopy. Water is able to move in the sugar films in the temperature range of 20-300 K as suggested by IR absorption bands of HOH bending and OH stretching modes that shift continuously with temperature. In glycerol/water these bands reflect the glass transition at approximately 160 K. The fluorescence of N-acetyl-L-tryptophanamide and tryptophan of melittin, Ca-free parvalbumin, and staphylococcal nuclease in dry trehalose/sucrose films remains broad and red-shifted over a temperature excursion of 20-300 K. In contrast, the fluorescence of these compounds in glycerol/water solvent shift to the blue as temperature decreases. The fluorescence of the buried tryptophan in Ca-bound parvalbumin in either sugar film or glycerol/water remains blue-shifted and has vibronic resolution over the entire temperature range. The red shift for fluorescence of indole groups exposed to solvent in the sugars is consistent with the motion of water molecules around the excited-state molecule that occurs even at low temperature, although the possibility of static complex formation between the excited-state molecule and water or other factors is discussed. The phosphorescence yield for protein and model indole compounds is sensitive to the matrix glass transition. Phosphorescence emission spectra are resolved and shift little in different solvents or temperature, as predicted by the small dipole moment of the excited triplet state molecule. The conclusion is that the sugar film maintains the environment present at the glass formation temperature for surface Trp and amide groups over a wide temperature excursion. In glycerol/water these groups reflect local changes in the environment as temperature changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号