首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose-stimulated phosphorylation of yeast isocitrate lyase in vivo   总被引:2,自引:0,他引:2  
Incorporation of 32P into Saccharomyces cerevisiae isocitrate lyase was observed after addition of glucose to a culture incubated with [32P]orthophosphoric acid. A band of 32P-labelled protein was coincident with the enzyme band when immunoprecipitates were subjected to SDS-PAGE and autoradiography. No label was found in the band corresponding to the isocitrate lyase when immunoprecipitation was done with a control pre-immune serum or in the presence of excess pure unlabelled enzyme. The incorporation of phosphate was associated with a decrease in enzyme activity. Phosphorylated isocitrate lyase was not proteolytically degraded when cells were cultured in mineral medium. The loss of protein antigenicity only took place when the yeast was grown in a complex medium containing glucose.  相似文献   

2.
The effects of actinomycin D, puromycin, and p-fluorophenylalanine on the activation of glyconeogenesis in Tetrahymena were studied. The extent of activation of glyconeogenesis in cultures containing inhibitor was as great as or greater than in the controls, as was the uptake of tracer levels of acetate into glycogen. These increases occurred despite a partial or complete inhibition of synthesis of isocitrate lyase, a glyconeogenic enzyme in Tetrahymena. Washed cells from these cultures could convert tracer or substrate levels of acetate to glycogen at enhanced rates. When glyconeogenesis was activated in starved cells in the presence of inhibitor, there was a negligible increase in the amount of isocitrate lyase, but a significant increase in the rate of glyconeogenesis. The data indicate that glyconeogenesis in Tetrahymena can be activated in the absence of enzyme synthesis.  相似文献   

3.
Repressed respiration of Escherichia coli cells grown in the presence of 2% glucose was derepressed when the cells were incubated in a buffer containing casamino acids. The glucose-repressed cells were deficient in succinate dehydrogenase [EC 1.3.99.1] and isocitrate lyase [EC 4.1.3.1] activities, which increased during the incubation. The increases in respiratory activity and enzyme activity on incubation were repressed by glucose, but except for isocitrate lyase these repressions could be restored by the addition of cyclic adenosine 3',5'-monophosphate. Inhibitors of protein synthesis blocked the increase of enzyme activity on incubation without glucose, or with glucose and the cyclic nucleotide.  相似文献   

4.
5.
Reuber hepatoma H-35 was found to retain the activity of carbamoyl-phosphate synthetase I. The content of this enzyme in H-35 grown in Eagle's minimal essential medium was about half that in rat liver. The enzyme from H-35 was the same as that from rat liver in molecular weight estimated by SDS-polyacrylamide gel electrophoresis, specific enzyme activity, kinetic parameters for ATP and N-acetyl-L-glutamate, and immunological crossreactivity. The enzyme in H-35 was induced by dexamethasone (1.4-fold) but not by glucagon or dibutyryl cAMP. Incorporation of [35S] methionine into the enzyme indicated that the effect of dexamethasone was due to increased synthesis of the enzyme protein (2.1-fold). By labeling with [35S]methionine, the precursor and the mature forms of carbamoyl-phosphate synthetase I were observed in the post-mitochondrial and mitochondrial fractions, respectively. By chasing the labeled cells with unlabeled methionine and cycloheximide, it was observed that the rate of translocation of the precursor into mitochondria is not affected by dexamethasone.  相似文献   

6.
A method has been developed to measure the relative rate of rat tissue kallikrein synthesis which employs a specific antiserum raised against a purified rat urinary kallikrein. Incorporation of [35S]methionine into kallikrein and protein 20 min after intraperitoneal injection was measured in submaxillary gland, pancreas, kidney and descending colon. Kallikrein content was measured with a direct radioimmunoassay, and kallikrein-specific incorporation of [35S]methionine measured after immunoprecipitation. Kallikrein specific radioactivity (c.p.m./mg of enzyme) was about 100-fold greater than that in total protein in both kidney and colon. In contrast, in pancreas the incorporation into the enzyme was only 5-fold higher than into protein, and in submaxillary gland the incorporation was equivalent. Measured as kallikrein-specific radioactivity relative to total protein radioactivity incorporated in 20 min, kallikrein represents 0.18% of total protein synthesis in the kidney, 0.34% in the pancreas, 0.41% in the colon, but 7.29% in the submaxillary gland. Dietary Na+ restriction increased the relative rate of kallikrein synthesis 1.8-fold in the kidney without a comparable effect in submaxillary gland. In contrast, testosterone increased the relative rate of synthesis 2.3-fold in submaxillary gland, but decreased it in kidney. The data show that endogenous kallikrein synthesis differs markedly in various tissues, and that interventions which are known to change kallikrein content or excretion also change the relative rate of enzyme synthesis.  相似文献   

7.
Vanadate was used as a substrate analogue to modify and subsequently localize active site serine residues of isocitrate lyase from Escherichia coli. Irradiation of the enzyme on ice with UV light in the presence of vanadate resulted in inactivation. Inactivation was prevented by the substrates glyoxylate or Ds-isocitrate and to a much lesser extent by succinate. Reduction of photoinactivated isocitrate lyase by NaBH4 partially restored enzyme activity. The photomodified enzyme was labeled by reduction with NaB[3H]4 in the presence and absence of the substrates succinate plus glyoxylate. Highly differential labeling of serine residues 319 and 321 in the absence of substrates suggests their importance in the action of isocitrate lyase. These residues are highly conserved in all five known sequences of this enzyme.  相似文献   

8.
1. Isocitrate lyase activity was measured in non-induced Chlorella fusca var. vacuolata cells. 2. During exponential autotrophic growth about 1-2 molecules of the enzyme per cell were present. 3. In light-limited cultures the amount of the enzyme increased to 10-20 molecules/cell. 4. When autotrophic cultures were placed in the dark, the basal activity of isocitrate lyase increased after a 2h lag so that after 8h in the dark there was a 500-fold increase in activity. 5. When isocitrate lyase was induced (by addition of acetate and removal of illumination) in autotrophic cultures which had been growing exponentially, the full induced rate of enzyme synthesis was obtained after 70-80min. 6. When light-limited autotrophic cultures were induced, the rate of isocitrate lyase synthesis was maximal after only 40-50min. 7. These data are consistent with a catabolite-repression control co-ordinated with photosynthetic activity,which may be independent of the specific inducing effect of acetate.  相似文献   

9.
Biosynthesis of isocitrate lyase, a tetrameric enzyme of the glyoxysomal matrix, was studied in Neurospora crassa, in which the formation of glyoxysomes was induced by a substitution of sucrose medium by acetate medium. 1. Translation of Neurospora mRNA in reticulocyte lysates yields a product which has the same apparent molecular weight as the subunit of the functional enzyme. Using N-formyl[35S]methionyl-tRNAfMet as a label, the translation product shows the same apparent size which indicates that the amino terminus has no additional "signal'-type sequence. 2. Read-out systems employing free and membrane-bound polysomes show that only free ribosomes are active in the synthesis of isocitrate lyase. 3. Isocitrate lyase synthesized in reticulocyte lysate is released into the supernatant and is soluble in a monomeric form. It interacts with Triton X-100 to form mixed micells in contrast to the functional tetrameric form. 4. Transfer of isocitrate lyase synthesized in vitro into isolated glyoxysomes is suggested by results of experiments in which supernatants from reticulocyte lysates are incubated with a particle fraction isolated from acetate-grown cells. No transfer occurs when particles from non-induced cells are employed. Resistance to added proteinase is used as a criterion for transmembrane transfer. The data support a post-translational transfer mechanism for isocitrate lyase. They suggest that isocitrate lyase passes through a cytosolic precursor pool as a monomer and is transferred into glyoxysomes.  相似文献   

10.
A role for calcium/calcium-binding proteins in a mechanism of signaling elicitor-inducible phytoalexin biosynthesis was investigated. Two classes of calcium/calmodulin antagonists, phenothiazines and naphthalenesulfonamides, inhibited sesquiterpene phytoalexin accumulation in tobacco (Nicotiana tabacum) cell-suspension cultures when added 1 h before elicitor. The antagonists also inhibited the induction of sesquiterpene cyclase enzyme activity, a key regulatory enzyme for sesquiterpene biosynthesis. The antagonists suppressed the induction of sesquiterpene cyclase only if added before or simultaneously with elicitor. Additionally, the antagonists inhibited (a) accumulation of the cyclase protein as measured in immunoblots; (b) the in vivo synthesis rate of the cyclase protein, measured as the incorporation of [35S]methionine into immunoprecipitable cyclase protein; and (c) the cyclase mRNA translational activity, measured as the incorporation of [35S]methionine into immunoprecipitable cyclase protein synthesized by in vitro translation of RNA isolated from antagonist-treated, elicitor-induced cells. In contrast, elicitor-inducible phenylalanine ammonia lyase enzyme activity, the level of the enzyme protein, the in vivo synthesis rate, and the mRNA translational activity were not affected by any of the antagonist treatments. Uptake and incorporation of [35S]methionine into total cellular proteins and total in vitro translation products were also not indiscriminately altered by the antagonist treatments. The current results suggest that calcium and/or calmodulin-like proteins may be elements of a signal transduction pathway mediating elicitor-induced accumulation of phytoalexins in tobacco.  相似文献   

11.
The regulation of avian lipoprotein lipase by dibutyryl cyclic AMP in cultured adipocytes was studied with quantitative and specific methods for the measurements of enzyme catalytic activity, enzyme protein mass, and immunoadsorption of labeled enzyme. Incubation of adipocytes in 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline results in a time-dependent decrease in cell lipoprotein lipase catalytic activity. The activity is decreased by 70% in 4 h and over 90% by 12 h. The decrease in cellular catalytic activity is due to a decrease in both enzyme content and enzyme catalytic efficiency. 4 h after exposure of adipocytes to cAMP, enzyme protein was decreased from 3.58 +/- 0.5 to 1.92 +/- 0.1 ng/dish and specific activity from 15.1 +/- 2.1 to 8.4 +/- 1.1 nmol/ng. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in lipoprotein lipase activity was half-maximal at less than 25 microM dibutyryl cyclic AMP. The rate of lipoprotein lipase synthesis was estimated by measuring the incorporation of L-[35S]methionine into enzyme protein during 30 min. A method for the quantitative immunoadsorption of lipoprotein lipase from cell lysates was developed. Utilizing this immunoadsorption technique, the rate of incorporation of L-[35S]methionine into lipoprotein lipase was 0.0026 +/- 0.002%, when expressed as a percentage of that incorporated into total trichloroacetic acid-precipitable counts. By 2 h after exposure of adipocytes to 0.5 mM dibutyryl cAMP, the relative synthesis rate had already decreased to 64 +/- 4% of the control rate. After 16 h the synthesis rate was 43.2 +/- 13.8% of the control rate. The observed decreased synthesis rate could account for most of the decreased cellular enzyme content and diminished enzyme secretion rate.  相似文献   

12.
In order to determine the sites of synthesis of the proteins of the mammalian mitochondrial ribosome (mitoribosome), bovine (MDBK) cells were labeled with [35S]methionine in the presence of inhibitors of mitochondrial and cytoplasmic protein synthesis. Labeling in the absence of cytoplasmic protein synthesis produced a "blank" fluorogram, indicating that there is no mitochondrial product. Additionally, incorporation of [35S]methionine into the enumerated mitoribosomal proteins continued in the absence of mitochondrial protein synthesis. Finally, it was demonstrated that mitoribosomal proteins can be both translated and assembled into complete mitoribosomes in the absence of mitochondrial protein synthesis. These results indicate that in mammals, as opposed to lower eukaryotes, all of the mitoribosomal proteins are products of cytoplasmic protein synthesis.  相似文献   

13.
Acinetobacter calcoaceticus is capable of growing on acetate or compounds that are metabolized to acetate. During adaptation to growth on acetate, A. calcoaceticus B4 exhibits an increase in NADP(+)-isocitrate dehydrogenase and isocitrate lyase activities. In contrast, during adaptation to growth on acetate, Escherichia coli exhibits a decrease in NADP(+)-isocitrate dehydrogenase activity that is caused by reversible phosphorylation of specific serine residues on this enzyme. Also, in E. coli, isocitrate lyase is believed to be active only in the phosphorylated form. This phosphorylation of isocitrate lyase may regulate entry of isocitrate into the glyoxylate bypass. To understand the relationships between these two isocitrate-metabolizing enzymes and the metabolism of acetate in A. calcoaceticus B4 better, we have purified isocitrate lyase to homogeneity. Physical and kinetic characterization of the enzyme as well as the inhibitor specificity and divalent cation requirement have been examined.  相似文献   

14.
Proteoglycan synthesis by cultured chondrocytes from the Swarm rat chondrosarcoma was examined after treatment with 0.1 mg/ml of cycloheximide which inhibited [3H]serine incorporation into total protein by greater than 90%. Incorporation of [35S]sulfate into proteoglycans decreased with nearly first order kinetics (t 1/2 = 96 +/- 6 min) with an accompanying increase in the size of the proteoglycan molecules, primary due to an increase in chondroitin sulfate chain sizes. After 5 h of cycloheximide treatment, when [35S]sulfate incorporation was inhibited by about 90%, addition of 1 mM beta-D-xyloside restored 76% of the incorporation into chondroitin sulfate observed in cultures treated only with xyloside. This suggests that the biochemical pathways for the affected by cycloheximide treatment. Cultures were prelabeled for 15 min with either [3H]serine or [35S]-methionine, and then cycloheximide was added to block further protein synthesis. Both precursors appeared in completed proteoglycan molecules with nearly first order kinetics with t 1/2 values of 92 +/- 8 and 101 +/- 11 min for [3H]serine and [35S]methionine, respectively, values in close agreement with the t 1/2 from the [35S]sulfate data. These results suggest that after cycloheximide treatment, the rate of [35S]sulfate incorporation into proteoglycan, after a correction for increases in chondroitin sulfate chain size, was directly proportional to the size of the intracellular pool of core protein. From the steady state rate of proteoglycan synthesis (estimated to be about 80 ng/min/10(6) cells in separate experiments) and a corrected t 1/2 value of 60 min, the amount of precursor core protein can be calculated to be about 500 ng/10(6) cells in these experiments.  相似文献   

15.
Phospholipid incorporation of 32P by primary myotube cultures and the tissue activity of sarcolemmal Na+/K(+)-transporting ATPase were studied to determine whether the absence of dystrophin from dystrophic (mdx) muscle would affect membrane lipid synthesis and membrane function. The incorporation of 32P by phospholipid as a ratio with total protein was greater in cultured dystrophic cells compared with control cells. The mdx cells also incorporated more 32P than control cells into phosphatidylethanolamine, which is thought to increase prior to myoblast fusion, and less into phosphatidylserine, phosphatidylinositol, and lysophosphatidylcholine. There was no difference in total protein content or [3H]leucine or 32P incorporation into the aqueous fraction of dystrophic and control cells, although dystrophic cells incorporated less [35S]methionine into protein than controls. Isolated sarcolemma from mdx skeletal muscle tissue demonstrated a consistently greater specific activity of ouabain-sensitive Na+/K(+)-transporting ATPase than sarcolemmal preparations from control skeletal muscle. These observations suggest that cytoskeletal changes such as dystrophin deficiency may alter the differentiation of membrane composition and function.  相似文献   

16.
F E Weber  D Pette 《FEBS letters》1988,238(1):71-73
An 11-fold increase in hexokinase activity and the hexokinase II isoform was found in rat tibialis anterior muscle after 7 days of chronic, low-frequency stimulation. In vivo labeling studies showed that this increase in enzyme protein content was related to an approx. 30-fold increase in [35S] methionine incorporation.  相似文献   

17.
By a newly developed double-stranded mutagenesis technique, histidine (H), glutamate (E), arginine (R) and leucine (L) have been substituted for the lysyl 193 residue (K-193) in isocitrate lyase from Escherichia coli. The substitutions for this residue, which is present in a highly conserved, cationic region, significantly affect both the Km for Ds-isocitrate and the apparent kcat of isocitrate lyase. Specifically, the conservative substitutions, K-193-->H (K193H) and K193R, reduce catalytic activity by ca. 50- and 14-fold, respectively, and the nonconservative changes, K193E and K193L, result in assembled tetrameric protein that is completely inactive. The K193H and K193R mutations also increase the Km of the enzyme by five- and twofold, respectively. These results indicate that the cationic and/or acid-base character of K193 is essential for isocitrate lyase activity. In addition to the noted effects on enzyme activity, the effects of the mutations on growth of JE10, an E. coli strain which does not express isocitrate lyase, were observed. Active isocitrate lyase is necessary for E. coli to grow on acetate as the sole carbon source. It was found that a mutation affecting the activity of isocitrate lyase similarly affects the growth of E. coli JE10 on acetate when the mutated plasmid is expressed in this organism. Specifically, the lag time before growth increases over sevenfold and almost twofold for E. coli JE10 expressing the K193H and K193R isocitrate lyase variants, respectively. In addition, the rate of growth decreases by almost 40-fold for E. coli JE10 cells expressing form K193H and ca. 2-fold for those expressing the K193R variants. Thus, the onset and rate of E. coli growth on acetate appears to depend on isocitrate lyase activity.  相似文献   

18.
Phorbol 12-myristate 13-acetate (PMA) induces time-dependent changes in protein kinase C subcellular distribution and enzymatic activity in the human osteosarcoma cell line SaOS-2. Short (less than 60 min) incubations with PMA caused decreased cytosolic enzyme activity and a concomitant increase in particulate protein kinase; after 3 h, particulate protein kinase C activity also declined to reach less than 10% of basal activity by 24 h (Krug, E., and Tashjian, Jr., A. H., (1987) Cancer Res. 47, 2243-2246). In order to determine whether the loss in enzyme activity was due to decreased enzyme protein, Western blot analyses were performed using a polyclonal antibody against protein kinase C raised in rabbits. This approach confirmed the previously reported time-related changes: 80-kDa immunoreactive protein kinase C initially translocated from the cytosol to the particulate cell fraction and later disappeared completely from the particulate fraction. Loss of protein kinase C enzymatic activity thus results from actual loss of the 80-kDa protein; we found no evidence for generation of a calcium/phospholipid-independent protein kinase C-like form of the enzyme. Membrane association was confirmed by immunoprecipitation experiments using [35S]methionine-labeled cells. Brief exposure to PMA caused a marked loss in the [35S]methionine-labeled cytosolic protein kinase C band and an increase in the labeled particulate band. Protein kinase C immunoprecipitated from cells treated with PMA for 14 h displayed an increase in [35S]methionine label despite a greater than 80% loss of enzyme activity. The high specific radioactivity of the remaining 80-kDa protein leads us to conclude that long term treatment with PMA causes an increase in the rate of protein kinase C synthesis accompanied by a still greater increase in the rate of enzyme degradation in SaOS-2 cells.  相似文献   

19.
InRhodobacter capsulatus E1F1, isocitrate lyase (ICL) (EC 4.5.3.1) is a regulatory enzyme whose levels are increased in the presence of acetate as the sole carbon source. Acetate activated isocitrate lyase in a process dependent on energy supply and de novo protein synthesis. In contrast to isocitrate lyase, isocitrate dehydrogenase (ICDH) activity was independent of the carbon source used for growth and significantly increased in darkened cells. Pyruvate or yeast extract prevented in vivo activation of isocitrate lyase in cells growing on acetate. The enzyme was reversibly inactivated to a great extent in vitro by pyruvate and other oxoacids presumably involved in acetate metabolism. These results suggest that, inR. capsulatus E1F1, isocitrate lyase is regulated by both enzyme synthesis and oxoacid inactivation.  相似文献   

20.
Nocardia salmonicolor, grown on acetate, commercial D,L-lactate or hydrocarbon substrates, has high isocitrate lyase activities compared with those resulting from growth on other carbon sources. This presumably reflects the anaplerotic role of the glyoxylate cycle during growth on the former substrates. Amongst a variety of compounds tested, including glucose, pyruvate and tricarboxylic acid cycle intermediates, only succinate and fumarate prevented an increase in enzyme activity in the presence of acetate. When acetate (equimolar to the initial sugar concentration) was added to cultures growing on glucose, there followed de novo synthesis of isocitrated lyase and isocitrate dehydrogenase, with increases in growth rate and glucose utilization, and both acetate and glucose were metabolized simultaneously. A minute amount of acetate (40 muM) caused isocitrate lyase synthesis (a three-fold increase in activity within 3 min of addition) when added to glucose-limited continuous cultures, but even large amounts added to nitrogen-limited batch cultures were ineffective. Malonate, at a concentration that was not totally growth-inhibitory (1mM) prevented the inhibition of acetate-stimulated isocitrate lyase synthesis by succinate, but fumarate still inhibited in the presence of malonate. Phosphoenolpyruvate is a non-competitive inhibitor of the enzyme (apparent Ki 1-7 mM). The results are consistent with the induction of isocitrate or a closely related metabolite, and catabolite repression by a C-4 acid of the tricarboxylic acid cycle, possibly fumarate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号