首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Limited trypsin digestion of type I cAMP-dependent protein kinase holoenzyme results in a proteolytic-resistant Delta(1-72) regulatory subunit core, indicating that interaction between the regulatory and catalytic subunits extends beyond the autoinhibitory site in the R subunit at the NH(2) terminus. Sequence alignment of the two R subunit isoforms, RI and RII, reveals a significantly sequence diversity at this specific region. To determine whether this sequence diversity is functionally important for interaction with the catalytic subunit, specific mutations, R133A and D328A, are introduced into sites adjacent to the active site cleft in the catalytic subunit. While replacing Arg(133) with Ala decreases binding affinity for RII, interaction between the catalytic subunit and RI is not affected. In contrast, mutant C(D328A) showed a decrease in affinity for binding RI while maintaining similar affinities for RII as compared with the wild-type catalytic subunit. These results suggest that sequence immediately NH(2)-terminal to the consensus inhibition site in RI and RII interacts with different sites at the proximal region of the active site cleft in the catalytic subunit. These isoform-specific differences would dictate a significantly different domain organization in the type I and type II holoenzymes.  相似文献   

3.
The catalytic subunit of cAMP-dependent protein kinase contains two stable phosphorylation sites, Thr-197 and Ser-338 (Shoji, S., Titani, K., Demaille, J. G., and Fischer, E. H. (1979) J. Biol. Chem. 254, 6211-6214). Thr-197 is very resistant to dephosphorylation and thus cannot typically be autophosphorylated in vitro once the stable subunit is formed. Ser-338 is slowly dephosphorylated and can be rephosphorylated autocatalytically. In addition to these two stable phosphorylation sites, a new site of autophosphorylation, Ser-10, was identified. Phosphorylation at Ser-10 does not have a major effect on activity, and phosphates from Ser-10 or Ser-338 are not transferred to physiological substrates such as the type II regulatory subunit. Autophosphorylation at Ser-10 is associated with one of the two major isoelectric variants of the catalytic subunit. The form having the more acidic pI can be autophosphorylated at Ser-10 while the more basic form of the catalytic subunit cannot. Phosphorylation at Ser-10 does not account for the two isoenzyme forms. Since the reason for two isoelectric variants of the catalytic subunit is still unknown, it is not possible to provide a structural basis for the difference in accessibility of Ser-10 to phosphorylation. Either Ser-10 is not accessible in the more basic form of the catalytic subunit or some other type of post- or cotranslational modification causes Ser-10 to be a poor substrate. Whether the myristoyl group at the amino-terminal Gly is important for Ser-10 autophosphorylation remains to be established. The isoenzyme forms of the catalytic subunit do not correspond to the gene products coded for by the C alpha and C beta genes.  相似文献   

4.
The inactivation of the catalytic subunit from rabbit muscle cAMP-dependent protein kinase by the chloromethyl ketones from lysine and phenylalanine (TLCK and TPCK; A. Kupfer et al. (1979) Proc. Natl. Acad. Sci. USA 76, 3073) has been confirmed for the same enzyme from rat muscle. However, other structurally not related protease inhibitors, antipain and leupeptin, did not inhibit the catalytic subunit from rat muscle. Thus it seems to be critical to attribute the interference of protease inhibitors with complex biological phenomena like tumorigenesis etc. generally to the inhibition of protein kinases.  相似文献   

5.
J A Buechler  S S Taylor 《Biochemistry》1990,29(7):1937-1943
The catalytic subunit of cAMP-dependent protein kinase typically phosphorylates protein substrates containing basic amino acids preceding the phosphorylation site. To identify amino acids in the catalytic subunit that might interact with these basic residues in the protein substrate, the enzyme was treated with a water-soluble carbodiimide, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), in the presence of [14C]glycine ethyl ester. Modification of the catalytic subunit in the absence of substrates led to the irreversible, first-order inhibition of activity. Neither MgATP nor a 6-residue inhibitor peptide alone was sufficient to protect the catalytic subunit against inactivation by the carbodiimide. However, the inhibitor peptide and MgATP together completely blocked the inhibitory effects of EDC. Several carboxyl groups in the free catalytic subunit were radiolabeled after the catalytic subunit was modified with EDC and [14C]glycine ethyl ester. After purification and sequencing, these carboxyl groups were identified as Glu 107, Glu 170, Asp 241, Asp 328, Asp 329, Glu 331, Glu 332, and Glu 333. Three of these amino acids, Glu 331, Glu 107, and Asp 241, were labeled regardless of the presence of substrates, while Glu 333 and Asp 329 were modified to a slight extent only in the free catalytic subunit. Glu 170, Asp 328, and Glu 332 were all very reactive in the apoenzyme but fully protected from modification by EDC in the presence of MgATP and an inhibitor peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
B A Hemmings 《FEBS letters》1986,196(1):126-130
The cAMP-dependent protein kinase from LLC-PK1 cells can be activated in vivo by calcitonin and vasopressin, or forskolin. Continuous treatment of cells with these agents results in a decrease of total cAMP-PK activity. The loss of kinase activity was enhanced when either of these three agents was incubated in the presence of isobutylmethylxanthine. Results obtained using affinity purified antibodies to the catalytic subunit show that the loss of kinase was due to specific proteolysis of this subunit.  相似文献   

7.
J Toner-Webb  S S Taylor 《Biochemistry》1987,26(23):7371-7378
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Protein kinase A (cAMP dependent protein kinase catalytic subunit, EC 2.7.11.11) binds simultaneously ATP and a phosphorylatable peptide. These structurally dissimilar allosteric ligands influence the binding effectiveness of each other. The same situation is observed with substrate congeners, which reversibly inhibit the enzyme. In this review these allosteric effects are quantified using the interaction factor, which compares binding effectiveness of ligands with the free enzyme and the pre-loaded enzyme complex containing another ligand. This analysis revealed that the allosteric effect depends upon structure of the interacting ligands, and the principle “better binding: stronger allostery” observed can be formalized in terms of linear free-energy relationships, which point to similar mechanism of the allosteric interaction between the enzyme-bound substrates and/or inhibitor molecules. On the other hand, the type of effect is governed by ligand binding effectiveness and can be inverted from positive allostery to negative allostery if we move from effectively binding ligands to badly binding compounds. Thus the outcome of the allostery in this monomeric enzyme is the same as defined by classical theories for multimeric enzymes: making the enzyme response more efficient if appropriate ligands bind.  相似文献   

9.
10.
The structure of TPK1delta, a truncated variant of the cAMP-dependent protein kinase catalytic subunit from Saccharomyces cerevisiae, was determined in an unliganded state at 2.8 A resolution and refined to a crystallographic R-factor of 19.4%. Comparison of this structure to that of its fully liganded mammalian homolog revealed a highly conserved protein fold comprised of two globular lobes. Within each lobe, root mean square deviations in Calpha positions averaged approximately equals 0.9 A. In addition, a phosphothreonine residue was found in the C-terminal domain of each enzyme. Further comparison of the two structures suggests that a trio of conformational changes accompanies ligand-binding. The first consists of a 14.7 degrees rigid-body rotation of one lobe relative to the other and results in closure of the active site cleft. The second affects only the glycine-rich nucleotide binding loop, which moves approximately equals 3 A to further close the active site and traps the nucleotide substrate. The third is localized to a C-terminal segment that makes direct contact with ligands and the ligand-binding cleft. In addition to resolving the conformation of unliganded enzyme, the model shows that the salient features of the cAMP-dependent protein kinase are conserved over long evolutionary distances.  相似文献   

11.
beta-Adrenoreceptors were solubilized by deoxycholate from pigeon erythrocyte plasma membranes treated with N-ethylmaleimide. Removal of the detergent resulted in the incorporation of receptors into phospholipid vesicles as well as in the reconstitution of their biological activity. After fusion of vesicles containing reconstituted receptors to vesicles containing the Ns protein and a catalytic component, the hormonal activation of the enzyme was restored. When prior to fusion the beta-adrenoreceptor-containing vesicles were preincubated with the catalytic subunit of cAMP dependent protein kinase, the hormone-induced activation of the enzyme diminished by 45-50%. The decrease of activation is due to the increase in the lag phase of the enzyme activation in the presence of isoproterenol and Gpp(NH)p as well as to the loss of activity in the steady-state phase of activation. Phosphorylation of beta-adrenoreceptors decreased the concentration of the ternary isoproterenol-receptor-Ns protein complex involved in the activation of adenylate cyclase. Thus, the phosphorylation of receptors is responsible for the disturbances in the mechanism of hormonal signal transmission that are similar to those observed in adenylate cyclase desensitization.  相似文献   

12.
The kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase has been investigated employing the heptapeptide Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) as substrate. Initial velocity measurements performed over a wide range of ATP and Kemptide concentrations indicated that the reaction follows a sequential mechanistic pathway. In line with this, the results of product and substrate inhibition studies, the patterns of dead end inhibition obtained employing the nonhydrolyzable ATP analogue, AMP X PNP (5'-adenylylimidodiphosphate), and equilibrium binding determinations, taken in conjunction with the patterns of inhibition observed with the inhibitor protein of the cAMP-dependent protein kinase that are reported in the accompanying paper (Whitehouse, S., and Walsh, D.A. (1983) J. Biol. Chem. 258, 3682-3692), are best fit by a steady state Ordered Bi-Bi kinetic mechanism. Although the inhibition patterns obtained employing the synthetic peptide analogue in which the phosphorylatable serine was replaced by alanine were apparently incompatible with this mechanism, these inconsistencies appear to be due to some element of the structure of this latter peptide such that it is not an ideal dead end inhibitor substrate analogue. The data presented both here and in the accompanying paper suggest that both this substrate, analogue and the ATP analogue, AMP X PNP, do not fully mimic the binding of Kemptide and ATP, respectively, in their mechanism of interaction with the protein kinase. It is proposed that, as with some other kinase reactions, the configuration of the terminal anhydride bond of ATP assumes a conformation once the nucleotide is bound to the protein kinase that assists in the binding of either Kemptide or the inhibitor protein but not the alanine-substituted peptide and that AMP X PNP, because of its terminal phosphorylimido bond, cannot assume this conformation which favors protein (or peptide) binding.  相似文献   

13.
Partially purified smooth muscle (chicken gizzard) actomyosin contains two major substrates of cAMP-dependent protein kinase: a protein of Mr = 130,000, identified as the calmodulin-dependent myosin light chain kinase, and a protein of Mr = 42,000. This latter protein was shown by a variety of electrophoretic procedures to be actin. Purified smooth muscle actin also was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. The rate of phosphorylation of smooth muscle actin was significantly enhanced by depolyjerization of actin. A maximum of 2.0 mol phosphate could be incorporated per mol G-actin. Skeletal muscle F-actin was not significantly phosphorylated by protein kinase; however, skeletal G-actin is a substrate for the protein kinase although its rate of phosphorylation was significantly slower than that of smooth muscle G-actin.  相似文献   

14.
The bovine C alpha type catalytic subunit of the cAMP-dependent protein kinase was cloned. A partial cDNA was isolated from a bovine heart cDNA library. This clone contained 120 bp of the coding sequence and the entire 3' untranslated region of 1431 bp. The complete coding region was cloned by PCR amplification from total bovine heart and skeletal muscle RNA. The sequence of the 3' oligonucleotide was taken from the partial cDNA clone whereas the 5' oligonucleotide was chosen by comparison of sequences of published C alpha subunits from other species. In the deduced amino acid sequence there is one deviation from the published bovine C alpha protein sequence, aspartic acid 286 is exchanged by an asparagine. The C alpha mRNA was found to be expressed differentially in various bovine tissues.  相似文献   

15.
16.
cAMP-dependent protein kinase mediates a variety of cellular responses in most eukaryotic cells. Many of these responses are cytoplasmic, whereas others appear to require nuclear localization of the catalytic subunit. In order to understand further the molecular basis for subcellular localization of the catalytic subunit, the effect of the heat stable protein kinase inhibitor (PKI) was investigated. The subcellular localization of the catalytic (C) subunit was determined both in the presence and absence of PKI, by microinjecting fluorescently labeled C subunit into single living cells. When injected alone, a significant fraction of the dissociated C subunit localized to the nucleus. When coin-injected with an excess of PKI, little of the C subunit localized to the nucleus, suggesting that accumulation of catalytic subunit in the nucleus requires either enzymatic activity or a nuclear localization signal. Inactivation of the catalytic subunit in vitro by treatment with N-ethylmaleimide did not prevent localization in the nucleus, indicating that enzymatic activity was not a prerequisite for nuclear localization. In an effort to search for a specific signal that might mediate nuclear localization, a complex of the catalytic subunit with a 20-residue inhibitory peptide derived from PKI (PKI(5-24)) was microinjected. In contrast to intact PKI, the peptide was not sufficient to block nuclear accumulation. In the presence of PKI(5-24), the C subunit localized to the nucleus in a fashion analogous to that of dissociated, active C subunit despite evidence of no catalytic activity in situ. Thus, nuclear localization of the C subunit appears to be independent of enzymatic activity but most likely dependent upon a signal. The signal is apparently masked by both the regulatory subunit and PKI but not by the inhibitory peptide.  相似文献   

17.
Colletotrichum trifolii is the fungal pathogen of alfalfa that causes anthracnose disease. For successful plant infection, this fungus must undergo a series of morphological transitions following conidial attachment, including germination and subsequent differentiation, resulting in appressorium formation. Our previous studies with pharmacological effectors of signaling pathways have suggested the involvement of cyclic AMP (cAMP)-dependent protein kinase (PKA) during these processes. To more precisely evaluate the role of PKA in C. trifolii morphogenesis, the gene encoding the catalytic (C) subunit of PKA (Ct-PKAC) was isolated, sequenced, and inactivated by gene replacement. Southern blot analysis with C. trifolii genomic DNA suggested that Ct-PKAC is a single-copy gene. Northern (RNA) blot analysis with total RNA from different fungal growth stages indicated that the expression of this gene was developmentally regulated. When Ct-PKAC was insertionally inactivated by gene replacement, the transformants showed a small reduction in growth relative to the wild type and conidiation patterns were altered. Importantly, PKA-deficient strains were unable to infect intact alfalfa (host) plants, though only a slight delay was observed in the timing for conidial germination and appressorial formation in the Ct-PKAC disruption mutants. Moreover, these mutants were able to colonize host tissues following artificial wounding, resulting in typical anthracnose disease lesions. Coupled with microscopy, these data suggest that the defect in pathogenicity is likely due to a failure in penetration. Our results demonstrate that PKA has an important role in regulating the transition between vegetative growth and conidiation, and is essential for pathogenic development in C. trifolii.  相似文献   

18.
The active site of the cAMP-dependent protein kinase catalytic subunit harbors a cluster of acidic residues-Asp 127, Glu 170, Glu 203, Glu 230, and Asp 241-that are not conserved throughout the protein kinase family. Based on crystal structures of the catalytic subunit, these amino acids are removed from the site of phosphoryl transfer and are implicated in substrate recognition. Glu 230, the most buried of these acidic residues, was mutated to Ala (rC[E230A]) and Gln (rC[E230Q]) and overexpressed in Escherichia coli. In contrast to the mostly insoluble and destabilized rC[E230A], rC[E230Q] is largely soluble, purifies like wild-type enzyme, and displays wild-type-like thermal stability. The mutation in rC[E230Q] causes an order of magnitude decrease in the affinity for a heptapeptide substrate, Kemptide. In addition, two independent kinetic techniques were used to dissect phosphoryl transfer and product release steps in the reaction pathway. Viscosometric and pre-steady-state quench-flow analyses revealed that the phosphoryl transfer rate constant decreases by an order of magnitude, whereas the product release rate constant remains unperturbed. Electrostatic alterations in the rC[E230Q] active site were assessed using modeling techniques that provide molecular interpretations for the substrate affinity and phosphoryl transfer rate decreases observed experimentally. These observations indicate that subsite recognition elements in the catalytic subunit make electrostatic contributions that are important not only for peptide affinity, but also for catalysis. Protein kinases may, therefore, discriminate substrates by not only binding them tightly, but also by only turning over ones that complement the electrostatic character of the active site.  相似文献   

19.
The protein kinase catalytic core in essence comprises an extended network of interactions that link distal parts of the molecule to the active site where they facilitate phosphoryl transfer from ATP to protein substrate. This review defines key sequence and structural elements, describes what is currently known about the molecular interactions, and how they are involved in catalysis.  相似文献   

20.
The catalytic subunit of cAMP-dependent protein kinase has two cysteine residues, Cys 199 and Cys 343, which are protected against alkylation by MgATP [Nelson, N. C., & Taylor, S. S. (1981) J. Biol. Chem. 256, 3743]. While Cys 199 is in close proximity to the active site of the catalytic subunit and is probably directly protected against alkylation by MgATP, the mechanism by which MgATP prevents alkylation of Cys 343 is unclear. To determine whether MgATP directly protects Cys 343 from alkylation by being in close proximity to both Cys 199 and the MgATP binding site, fluorescence resonance energy transfer techniques were used to measure the distance between Cys 199 and Cys 343. Two different donor-acceptor pairs containing 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3-diazole at Cys 199 as the acceptor and either 3,6,7-trimethyl-4-(bromomethyl)-1,5-diazabicyclo[3.3.0]octa-3,6-diene-2, 8- dione or N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine at Cys 343 as the donor were prepared following the method described in the preceding paper [First, E. A., & Taylor, S. S. (1989) Biochemistry (preceding paper in this issue)]. From the efficiencies of fluorescence resonance energy transfer for each donor-acceptor pair, the distance between Cys 199 and Cys 343 was estimated to be between 31 and 52 A. Since Cys 199 is close to the MgATP binding site and since MgATP cannot extend beyond a distance of 16 A, it is unlikely that Cys 343 at a distance of at least 31 A from Cys 199 is in direct contact with the bound nucleotide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号