首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dickson S  Smith FA  Smith SE 《Mycorrhiza》2007,17(5):375-393
This review commemorates and examines the significance of the work of Isobel Gallaud more than 100 years ago that first established the existence of distinct structural classes (Arum-type and Paris-type) within arbuscular mycorrhizal (AM) symbioses. We add new information from recent publications to the previous data last collated 10 years ago to consider whether any patterns have emerged on the basis of different fungal morphology within plant species or families. We discuss: (1) possible control exerted by the fungus over AM morphology; (2) apparent lack of plant phylogenetic relationships between the classes; (3) functions of the interfaces in different structural classes in relation to nutrient transfer in particular; and (4) the occurrence of plants with both of the major classes, and with intermediate AM structures, in different plant habitats. We also give suggestions for future research to help remove uncertainties about the functional and ecological significance of differences in AM morphology. Lastly, we urge retention of the terms Arum- and Paris-type, which are now well recognised by those who study AM symbioses.  相似文献   

2.
Arbuscular mycorrhizal (AM) symbioses are formed by approximately 80% of vascular plant species in all major terrestrial biomes. In consequence an understanding of their functions is critical in any study of sustainable agricultural or natural ecosystems. Here we discuss the implications of recent results and ideas on AM symbioses that are likely to be of particular significance for plants dealing with abiotic stresses such as nutrient deficiency and especially water stress. In order to ensure balanced coverage, we also include brief consideration of the ways in which AM fungi may influence soil structure, carbon deposition in soil and interactions with the soil microbial and animal populations, as well as plant-plant competition. These interlinked outcomes of AM symbioses go well beyond effects in increasing nutrient uptake that are commonly discussed and all require to be taken into consideration in future work designed to understand the complex and multifaceted responses of plants to abiotic and biotic stresses in agricultural and natural environments.  相似文献   

3.
Abstract

Legume plants enter two important endosymbioses – with soil fungi, forming phosphorus acquiring arbuscular mycorrhiza (AM), and with nitrogen-fixing bacteria, leading to the formation of nitrogen-fixing root nodules. Both symbioses have been studied extensively because these symbioses have great potential for agricultural applications. Although 80% of all living land plants form AM, the nitrogen-fixing root nodule symbiosis with rhizobia is almost exclusively restricted to legumes. Despite varying degree of differences in the morphological responses induced by both endosymbionts in the host plants, significant similarities in the development of both fungal and bacterial symbioses have been reported. The signal perception and signal transduction cascades that initiate nodulation and mycorrhization in legumes partially overlap. Legume genes have been identified that are required for the establishment of both AM and root nodule symbiosis and are referred to as the common SYM genes. Genetic dissection of the common SYM signal transduction pathway required for bacterial and fungal root endosymbiosis has not only unraveled the players involved but also provided a first glimpse at conservation and specialization of signaling cascades essential for nodulation and mycorrhiza development. Based on the observation of common signaling cascades, it is tempting to speculate that the root nodule symbiosis, where fossil records date back to the late Cretaceaous, adopted and subsequently modified more ancient signal transduction pathways leading to AM formation, having already been in place 400 million years ago. This review discusses the common aspects of recognition of mycorrhizal fungi and Rhizobium by the host, and further signal transduction that leads to an effective symbiosis.  相似文献   

4.
Plants and their microbial symbionts are often found to interact non‐randomly in nature, but we have yet to understand the mechanisms responsible for such preferential species associations. Theory predicts that host plants should select symbiotic partners bearing traits complementary to their own, as this should favor cooperation and evolutionary stability of mutualisms. Here, we present the first field‐based empirical test for this hypothesis using arbuscular mycorrhizas (AM), the oldest and most widespread plant symbiosis. Preferential associations occurring within a local plant–AM fungal community could not be predicted by the spatial distributions of interacting partners, nor by gradients in soil properties. Rather, plants with similar traits preferentially hosted similar AM fungi and, likewise, phylogenetically related AM fungi (assumed to have similar functional traits) interacted with similar plants. Our results suggest that trait‐based partner selection may have been a strong force in maintaining plant–AM fungal symbioses since the evolution of land plants.  相似文献   

5.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod? are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

6.
The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses   总被引:14,自引:0,他引:14  
Abstract Most land plant species that have been examined exist naturally with a higher fungus living in and around their roots in a symbiotic partnership called a mycorrhiza. Several types of mycorrhizal symbiosis exist, defined by the host/partner combination and the morphology of the symbiotic structures. The arbuscular mycorrhiza (AM) is ancient and may have co-evolved with land plants. Emerging results from gene expression studies have suggested that subsets of AM genes were co-opted during the evolution of other biotrophic symbioses. Here we compare the roles of phytohormones in AM symbiosis and ectomycorrhizas (EC), a more recent symbiosis. To date, there is little evidence of physiologic overlap between the two symbioses with respect to phytohormone involvement. Research on AM has shown that cytokinin (CK) accumulation is specifically enhanced by symbiosis throughout the plant. We propose a pathway of events linking enhanced CK to development of the AM. Additional and proposed involvement of other phytohormones are also described. The role of auxin in EC symbiosis and recent research advances on the topic are reviewed. We have reflected the literature bias in reporting individual growth regulator effects. However, we consider that gradients and ratios of these molecules are more likely to be the causal agents of morphologic changes resulting from fungal associations. We expect that once the individual roles of these compounds are explained, the subtleties of their function will be more clearly addressed.  相似文献   

7.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

8.
Zhu H  Riely BK  Burns NJ  Ané JM 《Genetics》2006,172(4):2491-2499
Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recruited functions from the more ancient AM symbiosis. The recent advances in cloning of the genes required for nodulation and AM symbioses from the two model legumes, Medicago truncatula and Lotus japonicus, provide a unique opportunity to address biological questions pertaining to the evolution of root symbioses in plants. Here, we report that nearly all cloned legume genes required for nodulation and AM symbioses have their putative orthologs in nonlegumes. The orthologous relationship can be clearly defined on the basis of both sequence similarity and microsyntenic relationship. The results presented here serve as a prelude to the comparative analysis of orthologous gene function between legumes and nonlegumes and facilitate our understanding of how gene functions and signaling pathways have evolved to generate species- or family-specific phenotypes.  相似文献   

9.
Arbuscular mycorrhizal (AM) symbioses are widespread in land plants but the extent to which they are functionally important in agriculture remains unclear, despite much previous research. We ask focused questions designed to give new perspectives on AM function, some based on recent research that is overturning past beliefs. We address factors that determine growth responses (from positive to negative) in AM plants, the extent to which AM plants that lack positive responses benefit in terms of nutrient (particularly phosphate: P) uptake, whether or not AM and nonmycorrhizal (NM) plants acquire different forms of soil P, and the cause(s) of AM ??growth depressions??. We consider the relevance of laboratory work to the agricultural context, including effects of high (available) soil P on AM fungal colonisation and whether AM colonisation may be deleterious to crop production due to fungal ??parasitism??. We emphasise the imperative for research that is aimed at increasing benefits of AM symbioses in the field at a time of increasing prices of P-fertiliser, and increasing demands on agriculture to feed the world. In other words, AM symbioses have key roles in providing ecosystem services that are receiving increasing attention worldwide.  相似文献   

10.
Symbiotic diversity in marine animals: the art of harnessing chemosynthesis   总被引:1,自引:0,他引:1  
Chemosynthetic symbioses between bacteria and marine invertebrates were discovered 30 years ago at hydrothermal vents on the Galapagos Rift. Remarkably, it took the discovery of these symbioses in the deep sea for scientists to realize that chemosynthetic symbioses occur worldwide in a wide range of habitats, including cold seeps, whale and wood falls, shallow-water coastal sediments and continental margins. The evolutionary success of these symbioses is evident from the wide range of animal groups that have established associations with chemosynthetic bacteria; at least seven animal phyla are known to host these symbionts. The diversity of the bacterial symbionts is equally high, and phylogenetic analyses have shown that these associations have evolved on multiple occasions by convergent evolution. This Review focuses on the diversity of chemosynthetic symbionts and their hosts, and examines the traits that have resulted in their evolutionary success.  相似文献   

11.
Development of the arbuscular mycorrhizal symbiosis   总被引:2,自引:0,他引:2  
The arbuscular mycorrhizal (AM) symbiosis formed between plant roots and fungi is one of the most widespread symbiotic associations found in plants, yet our understanding of events underlying its development are limited. The recent integration of biochemical, molecular and genetic approaches into analyses of the symbiosis is providing new insights into various aspects of its development. In the past year there have been advances in our understanding of the signals required for the formation of appressoria, the molecular changes in the root in response to colonisation, and components of the signal transduction pathways common to both the AM and Rhizobium symbioses.  相似文献   

12.
Chen C  Gao M  Liu J  Zhu H 《Plant physiology》2007,145(4):1619-1628
In natural ecosystems, many plants are able to establish mutually beneficial symbioses with microorganisms. Of critical importance to sustainable agriculture are the symbioses formed between more than 80% of terrestrial plants and arbuscular mycorrhizal (AM) fungi and between legumes and nitrogen-fixing rhizobial bacteria. Interestingly, the two symbioses share overlapping signaling pathways in legumes, suggesting that the evolutionarily recent root nodule symbiosis may have acquired functions from the ancient AM symbiosis. The Medicago truncatula DMI3 (DOESN'T MAKE INFECTIONS3) gene (MtDMI3) and its orthologs in legumes are required for both bacterial and fungal symbioses. MtDMI3 encodes a Ca(2+)/calmodulin-dependent protein kinase (CCaMK) essential for the transduction of the Ca(2+) signal induced by the perception of Nod factors. Putative orthologs of MtDMI3 are also present in non-legumes, but their function in AM symbiosis has not been demonstrated in any non-legume species. Here, we combine reverse genetic approaches and a cross-species complementation test to characterize the function of the rice (Oryza sativa) ortholog of MtDMI3, namely, OsDMI3, in AM symbiosis. We demonstrate that OsDMI3 is not only required for AM symbiosis in rice but also is able to complement a M. truncatula dmi3 mutant, indicating an equivalent role of MtDMI3 orthologs in non-legumes.  相似文献   

13.
The arbuscular mycorrhizal (AM) and the rhizobia-legume (RL) root endosymbioses are established as a result of signal exchange in which there is mutual recognition of diffusible signals produced by plant and microbial partners. It was discovered 20 years ago that the key symbiotic signals produced by rhizobial bacteria are lipo-chitooligosaccharides (LCO), called Nod factors. These LCO are perceived via lysin-motif (LysM) receptors and activate a signaling pathway called the common symbiotic pathway (CSP), which controls both the RL and the AM symbioses. Recent work has established that an AM fungus, Glomus intraradices, also produces LCO that activate the CSP, leading to induction of gene expression and root branching in Medicago truncatula. These Myc-LCO also stimulate mycorrhization in diverse plants. In addition, work on the nonlegume Parasponia andersonii has shown that a LysM receptor is required for both successful mycorrhization and nodulation. Together these studies show that structurally related signals and the LysM receptor family are key components of both nodulation and mycorrhization. LysM receptors are also involved in the perception of chitooligosaccharides (CO), which are derived from fungal cell walls and elicit defense responses and resistance to pathogens in diverse plants. The discovery of Myc-LCO and a LysM receptor required for the AM symbiosis, therefore, not only raises questions of how legume plants discriminate fungal and bacterial endosymbionts but also, more generally, of how plants discriminate endosymbionts from pathogenic microorganisms using structurally related LCO and CO signals and of how these perception mechanisms have evolved.  相似文献   

14.
15.
An analysis of the current state of knowledge of symbiotic fungal associations in 'lower' plants is provided. Three fungal phyla, the Zygomycota, Ascomycota and Basidiomycota, are involved in forming these associations, each producing a distinctive suite of structural features in well-defined groups of 'lower' plants. Among the 'lower' plants only mosses and Equisetum appear to lack one or other of these types of association. The salient features of the symbioses produced by each fungal group are described and the relationships between these associations and those formed by the same or related fungi in 'higher' plants are discussed. Particular consideration is given to the question of the extent to which root fungus associations in 'lower' plants are analogous to 'mycorrhizas' of 'higher' plants and the need for analysis of the functional attributes of these symbioses is stressed. Zygomycetous fungi colonize a wide range of extant lower land plants (hornworts, many hepatics, lycopods, Ophioglossales, Psilotales and Gleicheniaceae), where they often produce structures analogous to those seen in the vesicular-arbuscular (VA) mycorrhizas of higher plants, which are formed by members of the order Glomales. A preponderance of associations of this kind is in accordance with palaeohbotanical and molecular evidence indicating that glomalean fungi produced the archetypal symbioses with the first plants to emerge on to land. It is shown, probably for the first time, that glomalean fungi forming typical VA mycorrhiza with a higher plant (Plantago lanceolata) can colonize a thalloid liverwort (Pellia epiphylla), producing arbuscules and vesicles in the hepatic. The extent to which these associations, which are structurally analogous to mycorrhizas, have similar functions remains to be evaluated. Ascomycetous associations are found in a relatively small number of families of leafy liverworts. The structural features of the fungal colonization of rhizoids and underground axes of these plants are similar to those seen in mycorrhizal associations of ericaceous plants like Vaccinium. Cross inoculation experiments have confirmed that a typical mycorrhizal endophyte of ericaceous plants, Hymenoscyphus ericae, will form associations in liverworts which are structurally identical to those seen in nature. Again, the functional significance of these associations remains to be examined. Some members of the Jungermanniales and Metzgeriales form associations with basidiomycetous fungi. These produce intracellular coils of hyphae, which are similar to the pelotons seen in orchid mycorrhizas, which also involve basidiomycetes. The fungal associates of the autotrophic Aneura and of its heterotrophic relative Cryptothallus mirabilis have been isolated. In the latter case it has been shown that the fungal symbiont is an ectomycorrhizal associate of Betula, suggesting that the apparently obligate nature of the association between the hepatic and Betula in nature is based upon requirement for this particular heterotroph.  相似文献   

16.
17.
Plants,mycorrhizal fungi and endobacteria: a dialog among cells and genomes   总被引:5,自引:0,他引:5  
This review focuses on mycorrhizas, which are associations between fungi and the roots of 90% of terrestrial plants. These are the most common symbioses in the world; they involve about 6000 species of fungi distributed through all the fungal phyla and about 240000 species of plants, including forest and crop plants. Thanks to mycorrhizal symbiosis and nutrient exchanges, regulated by complex molecular signals, the plant improves its vegetative growth, while the fungus accomplishes its life cycle. Molecular and cellular analyses demonstrate that during colonization the cellular organization of the two eukaryotes is completely remodeled. For example, in cortical cells, structural modifications involve both the host and the microbiont. Recent studies revealed that in arbuscular mycorrhizas (AM), system complexity is increased by the presence of a third symbiont: a bacterium living inside the fungus. The presence of this resident genome makes the investigation of the molecular dialogues among the symbiotic partners even more complex. Molecular analysis showed that the bacterium has genes involved in the acquisition of mineral nutrients. The experimental data support the current view that mycorrhizal symbioses are often tripartite associations.  相似文献   

18.
Barker  Susan J.  Duplessis  Sébastien  Tagu  Denis 《Plant and Soil》2002,244(1-2):85-95
Genetic analyses of mycorrhizal symbioses have been far less common to date than molecular biological investigations. This review aims to address the problem that genetic research approaches are some of the least familiar to non specialists by providing some detailed explanations of the requirements and processes involved, including concepts of genetic variation and genetic mapping. Each section includes examples of research progress which is restricted to studies of arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) symbioses. Most such research has focussed on AM hosts or EcM fungi. For AM hosts, some early work on natural genetic variation has not been exploited yet, but new research with barley and clover will enable genetic mapping of mycorrhizal associated QTLs for the first time. EcM fungal studies have shown a genetic basis for mycorrhizal capacity and quantitative genetic differences in mycorrhizal capacity. Some recent work with EcM hosts has begun genetic mapping of QTLs associated with mycorrhizal status. Most AM genetic research has focussed on analysis of nodulation-defective mutants for their AM host status. Map-based cloning and characterisation of the first genes shown by these analyses to be essential for establishment of both nodulation and mycorrhizal symbioses are anticipated shortly. Comparisons with molecular and genetic research on plant disease resistance genes and signalling pathways may prove useful as those studies are more advanced and underlying biochemical and evolutionary relationships are likely to exist.  相似文献   

19.
During the last few years alder has declined in South Bohemia. The possible role of mycorrhizal and actinorhizal symbioses is reviewed and some of the preliminary results from experiments testing the influence of these symbioses on alder growth and the influence of eutrophication on the development of these symbioses are reported. Seedlings ofAlnus glutinosa were inoculated with arbuscular mycorrhizal (AM) fungi and the actinomyceteFrankia in experiment 1, and with rhizosphere soil collected from field sites with different degrees of alder damage in experiment 2. In both experiments, a solution containing nitrate, ammonia and phosphorus in concentrations simulating eutrophic waters, was applied. Both symbioses markedly promoted the growth of the seedlings in experiment 1. The plants inoculated with the rhizosphere soil microflora in experiment 2 were larger than the control plants. Response of the seedlings to the inoculation with the soil from the rhizosphere of damaged alder trees from six field sites differs, even though no correlation was found relating growth to the health status of the trees. Nutrient treatment did not have any effect on the growth of seedlings in either experiment. The dry weight ofFrankia was greater in mycorrhizal plants compared to nonmycorrhizal plants and mycorrhizal colonization is reduced inFrankia inoculated plants supplemented with phosphorus in experiment 1. Nitrogen enhanced mycorrhizal colonization in nodulated plants which were not supplemented with phosphorus no effect of nitrogen on actinorhiza was observed.  相似文献   

20.
Plants are solar-powered sugar factories that feed a multitude of other organisms. Many of these organisms associate directly with host plants to gain access to the plant's photosynthates. Such symbioses encompass a wide collection of styles ranging from mutualistic to commensal and parasitic. Among these, the mutualistic arbuscular mycorrhizal (AM) symbiosis is one of the evolutionarily oldest symbioses of plants, relying on the formation of an intimate relationship between fungi of the Glomeromycota and roots of the majority of vascular flowering plants. In this symbiosis, the fungus intracellularly colonizes living root cells, implying the existence of an extreme form of compatibility. Interestingly, molecular events that happen in the plant in response to mycorrhizal colonization also occur in other beneficial and, as recently shown, even antagonistic plant symbioses. Thus, basic 'compatibility modules' appear to be partially conserved between mutualism and parasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号