首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction  

Intervertebral disc tissue homeostasis is modulated by a variety of molecules. Silent mating type information regulator 2 homolog 1 (SIRT1) plays a key role in various physiological processes. The aim of the present study was to verify the expression of SIRT1 and determine SIRT1 function in human intervertebral disc cell homeostasis.  相似文献   

2.

Background

Sirtuin 1 (SIRT1) and sirtuin 2 (SIRT2) are NAD+-dependent protein deacetylases involved in the regulation of key cancer-associated genes. In this study we evaluated the relevance of these deacetylases in lung cancer biology.

Material and Methods

Protein levels of SIRT1 and SIRT2 were determined in non-small cell lung cancer (NSCLC) cell lines and primary tumors from 105 patients. Changes in proliferation were assessed after SIRT1 and SIRT2 downregulation in lung cancer cell lines using siRNA-mediated technology or tenovin-1, a SIRT1 and SIRT2 inhibitor.

Results

High SIRT1 and SIRT2 protein levels were found in NSCLC cell lines compared with non-tumor lung epithelial cells. The expression of SIRT1 and SIRT2 proteins was also significantly higher in lung primary tumors than in normal tissue (P<0.001 for both sirtuins). Stronger nuclear SIRT1 staining was observed in adenocarcinomas than in squamous cell carcinomas (P=0.033). Interestingly, in NSCLC patients, high SIRT1 and SIRT2 expression levels were associated with shorter recurrence-free survival (P=0.04 and P=0.007, respectively). Moreover, the combination of high SIRT1 and SIRT2 expression was an independent prognostic factor for shorter recurrence-free survival (P=0.002) and overall survival (P=0.022). In vitro studies showed that SIRT1 and/or SIRT2 downregulation significantly decreased proliferation of NSCLC.

Conclusions

Our results support the hypothesis that SIRT1 and SIRT2 have a protumorigenic role in lung cancer, promoting cell proliferation. Moreover, the expression of these proteins is associated with poor prognosis in NSCLC patients and may help to identify those NSCLC patients with high risk of recurrence that could benefit from adjuvant therapy after resection.  相似文献   

3.

Background

SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there.

Methodology/Principal Findings

Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5K)γ was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268) in PIP5Kγ and enhanced PIP5Kγ enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kγ knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kγ, PI(4,5)P2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice.

Conclusions/Significance

Our findings indicated that the control of TSH release by the SIRT1-PIP5Kγ pathway is important for regulating the metabolism of the whole body.  相似文献   

4.

Rationale and Objective

Sirtuin 1 (SIRT1) plays an important role in tumorigenesis and is increased in many human tumors. DBC1 is a negative regulator of SIRT1 via promotion of p53-mediated apoptosis. It is necessary to investigate the expression of SIRT1 and DBC1 in laryngeal and hypopharyngeal squamous cell carcinomas (LSCC and HSCC) and its correlation with available clinical parameters.

Methods

The mRNA levels of SIRT1 and DBC1 were measured in 54 paired LSCC or HSCC tumors and corresponding adjacent noncancerous mucosae using quantitative RT-PCR (qRT-PCR). The protein levels of SIRT1 and DBC1 were also evaluated in 120 cases of patients with LSCC or HSCC using immunohistochemical staining. The correlation between SIRT1 and DBC1 expression and clinical parameters was analyzed with Pearson chi-square test.

Results

qRT-PCR assay showed that, compared with the paired adjacent noncancerous mucosae, SIRT1 mRNA was significantly decreased in tumors. The immunohistochemical results indicated that the SIRT1 protein was also downregulated in tumors compared with noncancerous mucosae. Moreover, decreased SIRT1 was significantly correlated with the tumor clinical stage and lymph node metastasis. Additionally, DBC1 mRNA was significantly increased in tumors compared with noncancerous mucosae. The immunohistochemical results indicated that the DBC1 protein was downregulated in tumors, which is inconsistent with the results obtained by qRT-PCR. Finally, decreased DBC1 protein was significantly correlated with tumor differentiation, lymph node metastasis, and p53 expression.

Conclusions

SIRT1 and DBC1 might be involved in the pathophysiology of laryngeal and hypopharyngeal squamous cell carcinomas and are associated with lymph node metastasis and p53 positive staining in LSCCs and HSCCs.  相似文献   

5.

Background

Sirtuins (SIRT1-7) are a family of NAD-dependent deacetylases and/or ADP-ribosyltransferases that are involved in metabolism, stress responses and longevity. SIRT3 is localized to mitochondria, where it deacetylates and activates a number of enzymes involved in fuel oxidation and energy production.

Methodology/Principal Findings

In this study, we performed a proteomic screen to identify SIRT3 interacting proteins and identified several subunits of complex II and V of the electron transport chain. Two subunits of complex II (also known as succinate dehydrogenase, or SDH), SDHA and SDHB, interacted specifically with SIRT3. Using mass spectrometry, we identified 13 acetylation sites on SDHA, including six novel acetylated residues. SDHA is hyperacetylated in SIRT3 KO mice and SIRT3 directly deacetylates SDHA in a NAD-dependent manner. Finally, we found that SIRT3 regulates SDH activity both in cells and in murine brown adipose tissue.

Conclusions/Significance

Our study identifies SDHA as a binding partner and substrate for SIRT3 deacetylase activity. SIRT3 loss results in decreased SDH enzyme activity, suggesting that SIRT3 may be an important physiological regulator of SDH activity.  相似文献   

6.

Background

MicroRNAs (miRNAs or miRs) participate in the regulation of several biological processes, including cell differentiation. Recently, miR-34a has been implicated in the differentiation of monocyte-derived dendritic cells, human erythroleukemia cells, and mouse embryonic stem cells. In addition, members of the miR-34 family have been identified as direct p53 targets. However, the function of miR-34a in the control of the differentiation program of specific neural cell types remains largely unknown. Here, we investigated the role of miR-34a in regulating mouse neural stem (NS) cell differentiation.

Methodology/Principal Findings

miR-34a overexpression increased postmitotic neurons and neurite elongation of mouse NS cells, whereas anti-miR-34a had the opposite effect. SIRT1 was identified as a target of miR-34a, which may mediate the effect of miR-34a on neurite elongation. In addition, acetylation of p53 (Lys 379) and p53-DNA binding activity were increased and cell death unchanged after miR-34a overexpression, thus reinforcing the role of p53 during neural differentiation. Interestingly, in conditions where SIRT1 was activated by pharmacologic treatment with resveratrol, miR-34a promoted astrocytic differentiation, through a SIRT1-independent mechanism.

Conclusions

Our results provide new insight into the molecular mechanisms by which miR-34a modulates neural differentiation, suggesting that miR-34a is required for proper neuronal differentiation, in part, by targeting SIRT1 and modulating p53 activity.  相似文献   

7.

Background

Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1α induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood.

Results

Here we show that PGC-1α strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1α led to decreased Sirt3 gene expression. PGC-1α activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (−407/−399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRα bound to the identified ERRE and PGC-1α co-localized with ERRα in the mSirt3 promoter. Knockdown of ERRα reduced the induction of Sirt3 by PGC-1α in C2C12 myotubes. Furthermore, Sirt3 was essential for PGC-1α-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1α in C2C12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1α on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1α on mitochondrial biogenesis in C2C12 myotubes.

Conclusion

Our results indicate that Sirt3 functions as a downstream target gene of PGC-1α and mediates the PGC-1α effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The elucidation of the molecular mechanisms of SIRT3 regulation and its physiological functions may provide a novel target for treating ROS-related disease.  相似文献   

8.

Aim

The role of Sirtuin 1 (SIRT 1) in carcinogenesis is controversial. This study was to explore the association between the SIRT1 expression and the clinical characteristics, the responsiveness to chemotherapy and prognosis in Non-small cell lung cancer (NSCLC).

Methods

We enrolled 295 patients with inoperable advanced stage of NSCLC, namely, stage III (A+B) and IV NSCLC. All patients had received platinum-based chemotherapy after diagnosis and the chemotherapy response were evaluated. All patients were followed up for overall survival (OS) and progression free survival (PFS). In vitro, H292 cells were tranfected with SIRT1 small interfering RNA (siRNA). The cell biological behaviors and chemosensitivity to cisplatin treatment were studied. The in vivo tumorgenesis and metastasis assays were performed in nude mice.

Results

We found that the SIRT1 expressions were significantly associated with the tumor stage, tumor size and differentiation status. Patients with high SIRT 1 expressions had a significantly higher chance to be resistant to chemotherapy than those with low SIRT 1 expression. Patients with high expression of SIRT1 had significantly shorter OS and DFS than those with low expression. Cox analyses confirmed that the SIRT 1 expression was a strong predictor for a poor OS and PFS in NSCLC patients underwent Platinum-based chemotherapy. In vitro studies revealed that the reduced expression SIRT 1 by siRNA technique significantly inhibited cell proliferation, migration and invasion. More importantly, SIRT1 si-RNA significantly enhanced the chemosensitivity of H292 cells to cisplatin treatment. The in vivo tumorgenesis and metastasis assays showed that SIRT1 knockdown dramatically reduced the tumor volume and the metastatic ability in nude mice.

Conclusion

Collectively, our data suggest that the SIRT1 expression may be a molecular marker associated with the NSLCLC clinical features, treatment responsiveness and prognosis of advanced NSCLC.  相似文献   

9.

Background

It has been well documented that phosphodiesterase-5 inhibitor, sildenafil (SIL) protects against myocardial ischemia/reperfusion (I-R) injury. SIRT1 is part of the class III Sirtuin family of histone deacetylases that deacetylates proteins involved in cellular stress response including those related to I-R injury.

Objective/Hypothesis

We tested the hypothesis that SIL-induced cardioprotection may be mediated through activation of SIRT1.

Methods

Adult male ICR mice were treated with SIL (0.7 mg/kg, i.p.), Resveratrol (RSV, 5 mg/kg, a putative activator of SIRT1 used as the positive control), or saline (0.2 mL). The hearts were harvested 24 hours later and homogenized for SIRT1 activity analysis.

Results

Both SIL- and RSV-treated mice had increased cardiac SIRT1 activity (P<0.001) as compared to the saline-treated controls 24 hours after drug treatment. In isolated ventricular cardiomyocytes, pretreatment with SIL (1 µM) or RSV (1 µM) for one hour in vitro also upregulated SIRT1 activity (P<0.05). We further examined the causative relationship between SIRT1 activation and SIL-induced late cardioprotection. Pretreatment with SIL (or RSV) 24 hours prior to 30 min ischemia and 24 hours of reperfusion significantly reduced infarct size, which was associated with a significant increase in SIRT1 activity (P<0.05). Moreover, sirtinol (a SIRT1 inhibitor, 5 mg/kg, i.p.) given 30 min before I-R blunted the infarct-limiting effect of SIL and RSV (P<0.001).

Conclusion

Our study shows that activation of SIRT1 following SIL treatment plays an essential role in mediating the SIL-induced cardioprotection against I-R injury. This newly identified SIRT1-activating property of SIL may have enormous therapeutic implications.  相似文献   

10.

Purpose

The sirtuin gene family has been linked with tumourigenesis, in both a tumour promoter and suppressor capacity. Information regarding the function of sirtuins in pancreatic cancer is sparse and equivocal. We undertook a novel study investigating SIRT1-7 protein expression in a cohort of pancreatic tumours. The aim of this study was to establish a protein expression profile for SIRT1-7 in pancreatic ductal adenocarcinomas (PDAC) and to determine if there were associations between SIRT1-7 expression, clinico-pathological parameters and patient outcome.

Material and Methods

Immunohistochemical analysis of SIRT1-7 protein levels was undertaken in a tissue micro-array comprising 77 resected PDACs. Statistical analyses determined if SIRT1-7 protein expression was associated with clinical parameters or outcome.

Results

Two sirtuin family members demonstrated significant associations with clinico-pathological parameters and patient outcome. Low level SIRT3 expression in the tumour cytoplasm correlated with more aggressive tumours, and a shorter time to relapse and death, in the absence of chemotherapeutic intervention. Low levels of nuclear SIRT7 expression were also associated with an aggressive tumour phenotype and poorer outcome, as measured by disease-free and disease-specific survival time, 12 months post-diagnosis.

Conclusions

Our data suggests that SIRT3 and SIRT7 possess tumour suppressor properties in the context of pancreatic cancer. SIRT3 may also represent a novel predictive biomarker to determine which patients may or may not respond to chemotherapy. This study opens up an interesting avenue of investigation to potentially identify predictive biomarkers and novel therapeutic targets for pancreatic cancer, a disease that has seen no significant improvement in survival over the past 40 years.  相似文献   

11.

Background

Breast cancer is reported to cause the highest mortality among female cancer patients. Previous studies have explored the association of silent mating-type information regulator 2 homolog 1 (SIRT1) gene expression with prognosis in breast cancer. However, no studies exist, so far, on the role of SIRT1 gene polymorphism in breast cancer risk or prognosis. The present study aimed to assess the association between SIRT1 gene polymorphisms and breast cancer in Egyptians.

Methods

The study comprised 980 Egyptian females divided into a breast cancer group (541 patients) and a healthy control group (439 subjects). SIRT1 gene single nucleotide polymorphisms (SNPs) rs3758391, rs3740051 and rs12778366 were genotyped using real-time polymerase chain reaction (RT-PCR). Allelic and genotypic frequencies were determined in both groups and association with breast cancer and clinicopathological characteristics was assessed.

Results

Breast cancer patients exhibited elevated serum SIRT1 levels which varied among different tumor grades. SIRT1 rs3758391 and rs12778366 TT genotypes were more frequent, exhibited higher SIRT1 levels than CC and CT genotypes and were associated with histologic grade and lymph node status. SIRT1 rs12778366 TT genotype also correlated with negative estrogen receptor (ER) and progesterone receptor (PR) statuses. The T allele frequency for both SNPs was higher in breast cancer patients than in normal subjects. Combined GG and AG genotypes of rs3740051 were more frequent, showed higher serum SIRT1 levels than the AA genotype, and were associated with ER and PR expression. Furthermore, inheritance of the G allele was associated with breast cancer.

Conclusions

Our findings reveal that rs3758391 and rs12778366 polymorphisms of SIRT1 gene are associated with breast cancer risk and prognosis in the Egyptian population.  相似文献   

12.

Background

The directed differentiation of mesenchymal stem cells (MSCs) is tightly controlled by a complex network. Wnt signaling pathways have an important function in controlling the fate of MSCs. However, the mechanism through which Wnt/β-catenin signaling is regulated in differentiation of MSCs remains unknown. SIRT1 plays an important role in the regulation of MSCs differentiation.

Results

This study aimed to determine the effect of sirtuin 1 (SIRT1) on adipogenesis and myogenic differentiation of C3H10T1/2 cells. First, the MSC commitment and differentiation model was established by using 5-azacytidine. Using the established model, C3H10T1/2 cells were treated with SIRT1 activator/inhibitor during differentiation. The results showed that resveratrol inhibits adipogenic differentiation and improves myogenic differentiation, whereas nicotinamide promotes adipogenic differentiation. Notably, during commitment, resveratrol blocked adipocyte formation and promoted myotubes differentiation, whereas nicotinamide enhanced adipogenic potential of C3H10T1/2 cells. Furthermore, resveratrol elevated the expression of Cyclin D1 and β-catenin in the early stages. The luciferase assay showed that knockdown SIRT1 inhibits Wnt/β-catenin signaling, while resveratrol treatment or overexpression SIRT1 activates Wnt/β-catenin signaling. SIRT1 suppressed the expression of Wnt signaling antagonists sFRP2 and DACT1. Knockdown SIRT1 promoted adipogenic potential of C3H10T1/2 cells, whereas overexpression SIRT1 inhibited adipogenic differentiation and promoted myogenic differentiation.

Conclusions

Together, our results suggested that SIRT1 inhibits adipogenesis and stimulates myogenic differentiation by activating Wnt signaling.
  相似文献   

13.

Aims

We previously demonstrated that resveratrol (RSV) administration causes cardiac stromal cell-derived factor (SDF)-1 upregulation and can enhance the mobilization of stem cells in mice with acute myocardial infarction (AMI). However, the upstream signal transduction involved in SDF-1 regulation in the setting of AMI and RSV administration remains unclear. Because RSV is a sirtuin 1 (SIRT1) activator and SIRT proteins act as deacetylases, we investigated the role of SIRT1 in SDF-1 upregulation and its subsequent effects.

Methods and Results

In vitro experiments with H9C2 cardiomyocytes under hypoxia and serum-deprivation conditions showed that p53 acted upstream of SDF-1. RSV could not regulate SDF-1 effectively after SIRT1 silencing, indicating that it is dependent on SIRT1. Subsequently, male C57BL/6 mice were divided into four groups: 1) sham, 2) MI, 3) MI+RSV, and 4) MI+RSV plus nicotinamide, an inhibitor of the deacetylase activity of SIRT (MI+RSV+NAM). Compared with the sham mice, AMI caused a slight increase in the cardiac p53 level and resulted in significant SIRT1 downregulation and p53 acetylation or activation. Compared with the MI mice, MI+RSV administration improved the cardiac SDF-1 level and reversed the reduction of SIRT1 and the activation of p53. Furthermore, we observed less cardiac dysfunction in MI+RSV mice and determined that NAM abolished the effects of RSV.

Conclusions

RSV enhances cardiac SDF-1 excretion after AMI partially through a SIRT1 normalization/p53 inactivation pathway.  相似文献   

14.
15.

Background

Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), obesity and cardiovascular disease (CVD). Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1) belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox.

Hypothesis

We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction.

Methods and Results

We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05). Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05). Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose). These beneficial effects of CoPP were reversed by SnMP.

Conclusion

Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates NAFLD-associated vascular dysfunction; effects that are mediated by activation of SIRT1 gene expression.  相似文献   

16.

Objectives

To investigate the potential role and underlying mechanism of Sirtuin2 (SIRT2) in regulating high glucose (HG)-induced vascular endothelial cell injury by using human umbilical vein endothelial cells (HUVECs).

Results

SIRT2 mRNA and protein expression levels were decreased in HG-treated HUVECs. SIRT2 overexpression increased viability, decreased apoptosis and reduced levels of reactive oxygen species in HG-treated HUVECs. SIRT2 overexpression decreased TNF-α expression (146.5 ± 22.8 pg TNF-α ml?1) relative to that in the empty vector group (263.5 ± 18.5 pg TNF-α ml?1) and decreased MCP-1 expression (63.8 ± 9.85 pg MCP-1 ml?1) relative to that in the empty vector group (105.8 ± 8.5 pg MCP-1 ml?1). SIRT2 overexpression decreased the acetylation of p53 by 33% and decreased the acetylation of NF-κB p65 by 58% in HG-treated HUVECs.

Conclusion

SIRT2 prevents HG-induced vascular endothelial cell injury through suppressing the p53 and NF-κB signaling pathways.
  相似文献   

17.
Sirtuin 1 (SIRT1) is the closest mammalian homologue of yeast silent information regulator 2 (Sir2) and has a role in lifespan modulation. Reportedly, SIRT1 is also linked to neurodegenerative diseases. However, there are limited studies that report the relation between SIRT1 and neurodegenerative diseases using in vivo transgenic (Tg) methods. In the present study, we generated neuron-specific enolase (NSE) SIRT1 Tg mice that overexpress human SIRT1 in neurons. We examined possible neuroprotective effects of SIRT1 overexpression and compared their higher brain functions with those of wild-type (WT) mice. Overexpression of SIRT1 did not have any neuroprotective effects against the neuronal damage induced by ischemia or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, SIRT1 Tg mice exhibited a reference memory deficit. These findings suggest that an excessive expression of SIRT1 might induce the memory deficit in mice, but not neuroprotective effects.  相似文献   

18.
目的:通过建立体外脑缺血模型,探讨沉默信息因子3(SIRT3)在小鼠皮层神经元氧糖剥夺再灌注(OGD/R)损伤后的表达和意义。方法:C57BL/6J小鼠皮层神经元原代培养7天后,以氧糖剥夺不同时长(2 h、4 h、6 h、8 h)再灌注24 h作为观察时间点,利用细胞增殖-毒性检测试剂盒(Cell Counting Kit-8,CCK-8)检测细胞活力;小鼠乳酸脱氢酶(LDH)试剂盒检测LDH释放;蛋白印迹法(Western blot WB)观察微管相关蛋白1轻链3(LC3-Ⅱ)、活化凋亡蛋白3(Cleaved caspase-3)、以及SIRT3的表达变化;免疫荧光下进一步观察LC3-II、SIRT3表达。结果:与正常组比,随着氧糖剥夺时间的延长,LDH释放量呈台阶式升高(P0.01),而神经元活性进展性下降(P0.01);蛋白印迹结果发现在缺血损伤后LC3-Ⅱ整体上调,并于OGD 4h达峰值,SIRT3分子表达趋势与LC3-Ⅱ相似均呈抛物线状,而Cleaved caspase-3整体上调;相应的,细胞免疫荧光结果显示缺血损伤后神经元胞体和突起中LC3呈点状高表达,与此同时SIRT3荧光强度亦增高。结论:神经元缺血时间越长损伤越重;LC3-Ⅱ和SIRT3表达呈现相似性;SIRT3可能通过调控线粒体自噬参与了拮抗神经元缺血损伤的作用。  相似文献   

19.
20.

Background  

G-protein-coupled receptors (GPCRs) play a crucial role in many biological processes and represent a major class of drug targets. However, purification of GPCRs for biochemical study is difficult and current methods of studying receptor-ligand interactions involve in vitro systems. Caenorhabditis elegans is a soil-dwelling, bacteria-feeding nematode that uses GPCRs expressed in chemosensory neurons to detect bacteria and environmental compounds, making this an ideal system for studying in vivo GPCR-ligand interactions. We sought to test this by functionally expressing two medically important mammalian GPCRs, somatostatin receptor 2 (Sstr2) and chemokine receptor 5 (CCR5) in the gustatory neurons of C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号