首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present here a self-contained analytic review of the role of stochastic factors acting on a virus population. We develop a simple one-locus, two-allele model of a haploid population of constant size including the factors of random drift, purifying selection, and random mutation. We consider different virological experiments: accumulation and reversion of deleterious mutations, competition between mutant and wild-type viruses, gene fixation, mutation frequencies at the steady state, divergence of two populations split from one population, and genetic turnover within a single population. In the first part of the review, we present all principal results in qualitative terms and illustrate them with examples obtained by computer simulation. In the second part, we derive the results formally from a diffusion equation of the Wright-Fisher type and boundary conditions, all derived from the first principles for the virus population model. We show that the leading factors and observable behavior of evolution differ significantly in three broad intervals of population size, N. The “neutral limit” is reached when N is smaller than the inverse selection coefficient. When N is larger than the inverse mutation rate per base, selection dominates and evolution is “almost” deterministic. If the selection coefficient is much larger than the mutation rate, there exists a broad interval of population sizes, in which weakly diverse populations are almost neutral while highly diverse populations are controlled by selection pressure. We discuss in detail the application of our results to human immunodeficiency virus population in vivo, sampling effects, and limitations of the model.  相似文献   

2.
Stochastic Properties of Discrete Waves of the Limulus Photoreceptor   总被引:7,自引:6,他引:1  
In the dark-adapted photoreceptor of the horseshoe crab, Limulus, transient discrete depolarizations of the cell membrane, discrete waves, occur in total darkness and their rate of occurrence is increased by illumination. The individual latencies of the discrete waves evoked by a light stimulus often cannot be resolved because the discrete waves overlap in time. The latency of the first discrete wave that follows a stimulus can be determined with reasonable accuracy. We propose a model which allows us to make an estimate of the distribution of the latencies of the individual light-evoked discrete waves, and to predict the latency distribution of the first discrete wave that follows a stimulus of arbitrary intensity-time course from the latency distribution of the first discrete wave that follows a brief flash of light. For low intensity stimuli, the predictions agree well with the observations. We define a response as the occurrence of one or more discrete waves following a stimulus. The distribution of the peak amplitudes of responses suggests that the peak amplitude of individual discrete waves sometimes has a bimodal distribution. The latencies of the two types of discrete waves, however, follow similar distributions. The area under the voltage-time curve of responses that follow equal energy long (1.25 sec) and short (10 msec) light stimuli follows similar distributions, and this suggests that discrete waves summate linearly.  相似文献   

3.
The lac operon has been a paradigm for genetic regulation with positive feedback, and several modeling studies have described its dynamics at various levels of detail. However, it has not yet been analyzed how stochasticity can enrich the system's behavior, creating effects that are not observed in the deterministic case. To address this problem we use a comparative approach. We develop a reaction network for the dynamics of the lac operon genetic switch and derive corresponding deterministic and stochastic models that incorporate biological details. We then analyze the effects of key biomolecular mechanisms, such as promoter strength and binding affinities, on the behavior of the models. No assumptions or approximations are made when building the models other than those utilized in the reaction network. Thus, we are able to carry out a meaningful comparison between the predictions of the two models to demonstrate genuine effects of stochasticity. Such a comparison reveals that in the presence of stochasticity, certain biomolecular mechanisms can profoundly influence the region where the system exhibits bistability, a key characteristic of the lac operon dynamics. For these cases, the temporal asymptotic behavior of the deterministic model remains unchanged, indicating a role of stochasticity in modulating the behavior of the system.  相似文献   

4.
5.
6.
Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future.  相似文献   

7.
In many practical applications we deal with a problem of estimation of a density function of a vector x some components of which are discrete, while the remaining ones are continuous. Among many models that can be used in this case the most useful are the location model and the kernel model. The problem arises when the observed data contain missing values i.e. on some individuals some of the variables have not been observed with no particular pattern of missingness. An application of the EM algorithm will allow us to estimate the parameters of the location model from incomplete data. The method is described in Section 2. In Section 3 some suggestions how to deal with incompleteness when the kernel model is used are made. Finally, Section 4 contains an example.  相似文献   

8.

Objectives

To examine whether differential exposure to pre- and perinatal risk factors explained differences in levels of self-regulation between children of different races (White, Black, Hispanic, Asian, and Other).

Methods

Multiple regression models based on data from the Early Childhood Longitudinal Study, Birth Cohort (n ≈ 9,850) were used to analyze the impact of pre- and perinatal risk factors on the development of self-regulation at age 2 years.

Results

Racial differences in levels of self-regulation were observed. Racial differences were also observed for 9 of the 12 pre-/perinatal risk factors. Multiple regression analyses revealed that a portion of the racial differences in self-regulation was explained by differential exposure to several of the pre-/perinatal risk factors. Specifically, maternal age at childbirth, gestational timing, and the family’s socioeconomic status were significantly related to the child’s level of self-regulation. These factors accounted for a statistically significant portion of the racial differences observed in self-regulation.

Conclusions

The findings indicate racial differences in self-regulation may be, at least partially, explained by racial differences in exposure to pre- and perinatal risk factors.  相似文献   

9.
We analyze a class of models for unequal crossover (UC) of sequences containing sections with repeated units that may differ in length. In these, the probability of an imperfect alignment, in which the shorter sequence has d units without a partner in the longer one, scales like qd as compared to perfect alignments where all these copies are paired. The class is parameterized by this penalty factor q. An effectively infinite population size and thus deterministic dynamics is assumed. For the extreme cases q = 0 and q = 1, and any initial distribution whose moments satisfy certain conditions, we prove the convergence to one of the known fixed points, uniquely determined by the mean copy number, in both discrete and continuous time. For the intermediate parameter values, the existence of fixed points is shown.Copyright 2004 by Michael BaakeRevised version: 3 December 2003  相似文献   

10.
11.
In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by nonelementary reaction-rate functions (e.g., Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the nonelementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of nonelementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the nonelementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in nonelementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the prefactor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when nonelementary reaction functions are obtained using the total QSSA. Our work provides an apparently novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales.  相似文献   

12.
In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by nonelementary reaction-rate functions (e.g., Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the nonelementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of nonelementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the nonelementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in nonelementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the prefactor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when nonelementary reaction functions are obtained using the total QSSA. Our work provides an apparently novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales.  相似文献   

13.
A few spatiotemporal models of population dynamics are considered in relation to biological invasion and biological control. The patterns of spread in one and two spatial dimensions are studied by means of extensive numerical simulations. We show that, in the case that population multiplication is damped by the strong Allee effect (when the population growth rate becomes negative for small population density), in a certain parameter range the spread can take place not via the intuitively expected circular expanding population front but via motion and interaction of separate patches. Alternatively, the patchy spread can take place in a system without Allee effect as a result of strong environmental noise. We then show that the phenomenon of deterministic patchy invasion takes place ‘at the edge of extinction’ so that a small change of controlling parameters either brings the species to extinction or restores the travelling population fronts. Moreover, we show that the regime of patchy invasion in two spatial dimensions actually takes place when the species go extinct in the corresponding 1-D system.  相似文献   

14.
The inositol trisphosphate receptor () is one of the most important cellular components responsible for oscillations in the cytoplasmic calcium concentration. Over the past decade, two major questions about the have arisen. Firstly, how best should the be modeled? In other words, what fundamental properties of the allow it to perform its function, and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening and closing of small numbers of , is it possible for a deterministic model to be a reliable predictor of calcium behavior? Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively reproduced by a two-state model of the , and thus the behavior of the is essentially determined by its modal structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in ASMC are generated by a stochastic mechanism, stochasticity is not essential for a qualitative prediction of how oscillation frequency depends on model parameters, and thus deterministic models demonstrate the same level of predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using simplified models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on parameters it is sufficient to use a deterministic model.  相似文献   

15.
16.
We propose a new framework for rigorous robustness analysis of stochastic biochemical systems that is based on probabilistic model checking techniques. We adapt the general definition of robustness introduced by Kitano to the class of stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of biological models with uncertain parameters. The framework utilises novel computational methods that enable to effectively evaluate the robustness of models with respect to quantitative temporal properties and parameters such as reaction rate constants and initial conditions. We have applied the framework to gene regulation as an example of a central biological mechanism where intrinsic and extrinsic stochasticity plays crucial role due to low numbers of DNA and RNA molecules. Using our methods we have obtained a comprehensive and precise analysis of stochastic dynamics under parameter uncertainty. Furthermore, we apply our framework to compare several variants of two-component signalling networks from the perspective of robustness with respect to intrinsic noise caused by low populations of signalling components. We have successfully extended previous studies performed on deterministic models (ODE) and showed that stochasticity may significantly affect obtained predictions. Our case studies demonstrate that the framework can provide deeper insight into the role of key parameters in maintaining the system functionality and thus it significantly contributes to formal methods in computational systems biology.  相似文献   

17.
利用Lyapunov方法与K.lto公式及鞅的理论,研究了随机Lotka-Volterra系统正平衡点的全局渐近稳定性.得到了随机全局渐近稳定的主要定理,并以确定性系统的全局稳定性作为定理的推论.  相似文献   

18.
Estimation of epidemiological and population parameters from molecular sequence data has become central to the understanding of infectious disease dynamics. Various models have been proposed to infer details of the dynamics that describe epidemic progression. These include inference approaches derived from Kingman’s coalescent theory. Here, we use recently described coalescent theory for epidemic dynamics to develop stochastic and deterministic coalescent susceptible–infected–removed (SIR) tree priors. We implement these in a Bayesian phylogenetic inference framework to permit joint estimation of SIR epidemic parameters and the sample genealogy. We assess the performance of the two coalescent models and also juxtapose results obtained with a recently published birth–death-sampling model for epidemic inference. Comparisons are made by analyzing sets of genealogies simulated under precisely known epidemiological parameters. Additionally, we analyze influenza A (H1N1) sequence data sampled in the Canterbury region of New Zealand and HIV-1 sequence data obtained from known United Kingdom infection clusters. We show that both coalescent SIR models are effective at estimating epidemiological parameters from data with large fundamental reproductive number R0 and large population size S0. Furthermore, we find that the stochastic variant generally outperforms its deterministic counterpart in terms of error, bias, and highest posterior density coverage, particularly for smaller R0 and S0. However, each of these inference models is shown to have undesirable properties in certain circumstances, especially for epidemic outbreaks with R0 close to one or with small effective susceptible populations.  相似文献   

19.
20.
Classical replicator dynamics assumes that individuals play their games and adopt new strategies on a global level: Each player interacts with a representative sample of the population and if a strategy yields a payoff above the average, then it is expected to spread. In this article, we connect evolutionary models for infinite and finite populations: While the population itself is infinite, interactions and reproduction occurs in random groups of size N. Surprisingly, the resulting dynamics simplifies to the traditional replicator system with a slightly modified payoff matrix. The qualitative results, however, mirror the findings for finite populations, in which strategies are selected according to a probabilistic Moran process. In particular, we derive a one-third law that holds for any population size. In this way, we show that the deterministic replicator equation in an infinite population can be used to study the Moran process in a finite population and vice versa. We apply the results to three examples to shed light on the evolution of cooperation in the iterated prisoner’s dilemma, on risk aversion in coordination games and on the maintenance of dominated strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号