首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seeds of flowering plants develop from double fertilization and play a vital role in reproduction and supplying human and animal food. The genetic variation of seed traits is influenced by multiple genetic systems, e.g., maternal, embryo, and/or endosperm genomes. Understanding the genetic architecture of seed traits is a major challenge because of this complex mechanism of multiple genetic systems, especially the epistasis within or between different genomes and their interactions with the environment. In this study, a statistical model was proposed for mapping QTL with epistasis and QTL-by-environment (QE) interactions underlying endosperm and embryo traits. Our model integrates the maternal and the offspring genomes into one mapping framework and can accurately analyze maternal additive and dominant effects, endosperm/embryo additive and dominant effects, and epistatic effects of two loci in the same or two different genomes, as well as interaction effects of each genetic component of QTL with environment. Intensive simulations under different sampling strategies, heritabilities, and model parameters were performed to investigate the statistical properties of the model. A set of real cottonseed data was analyzed to demonstrate our methods. A software package, QTLNetwork-Seed-1.0.exe, was developed for QTL analysis of seed traits.  相似文献   

2.
Jarvis JP  Cheverud JM 《Genetics》2011,187(2):597-610
Genome-wide mapping analyses are now commonplace in many species and several networks of interacting loci have been reported. However, relatively few details regarding epistatic interactions and their contribution to complex trait variation in multicellular organisms are available and the identification of positional candidate loci for epistatic QTL (epiQTL) is hampered, especially in mammals, by the limited genetic resolution inherent in most study designs. Here we further investigate the genetic architecture of reproductive fatpad weight in mice using the F(10) generation of the LG,SM advanced intercross (AI) line. We apply multiple mapping techniques including a single-locus model, locus-specific composite interval mapping (CIM), and tests for multiple QTL per chromosome to the 12 chromosomes known to harbor single-locus QTL (slQTL) affecting obesity in this cross. We also perform a genome-wide scan for pairwise epistasis. Using this combination of approaches we detect 199 peaks spread over all 19 autosomes, which potentially contribute to trait variation including all eight original F(2) loci (Adip1-8), novel slQTL peaks on chromosomes 7 and 9, and several novel epistatic loci. Extensive epistasis is confirmed involving both slQTL confidence intervals (C.I.) as well as regions that show no significant additive or dominance effects. These results provide important new insights into mapping complex genetic architectures and the role of epistasis in complex trait variation.  相似文献   

3.
Soybean seed and pod traits are important yield components. Selection for high yield style in seed and pod along with agronomic traits is a goal of many soybean breeders. The intention of this study was to identify quantitative trait loci (QTL) underlying seed and pod traits in soybean among eleven environments in China. 147 recombinant inbred lines were advanced through single-seed-descent method. The population was derived from a cross between Charleston (an American high yield soybean cultivar) and DongNong594 (a Chinese high yield soybean cultivar). A total of 157 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. The phenotypic data of seed and pod traits [number of one-seed pod, number of two-seed pod, number of three-seed pod, number of four-seed pod, number of (two plus three)-seed pod, number of (three plus four)-seed pod, seed weight per plant, number of pod per plant] were recorded in eleven environments. In the analysis of single environment, fourteen main effect QTLs were identified. In the conjoint analysis of multiple environments, twenty-four additive QTLs were identified, and additive QTLs by environments interactions (AE) were evaluated and analyzed at the same time among eleven environments; twenty-three pairs of epistatic QTLs were identified, and epistasis (additive by additive) by environments interactions (AAE) were also analyzed and evaluated among eleven environments. Comparing the results of identification between single environment mapping and multiple environments conjoint mapping, three main effect QTLs with positive additive values and another three main effect QTLs with negative additive values, had no interactions with all environments, supported that these QTLs could be used in molecular assistant breeding in the future. These different effect QTLs could supply a good foundation to the gene clone and molecular asisstant breeding of soybean seed and pod traits.  相似文献   

4.
Epistasis is a commonly observed genetic phenomenon and an important source of variation of complex traits,which could maintain additive variance and therefore assure the long-term genetic gain in breeding.Inclusive composite interval mapping(ICIM) is able to identify epistatic quantitative trait loci(QTLs) no matter whether the two interacting QTLs have any additive effects.In this article,we conducted a simulation study to evaluate detection power and false discovery rate(FDR) of ICIM epistatic mapping,by considering F2 and doubled haploid(DH) populations,different F2 segregation ratios and population sizes.Results indicated that estimations of QTL locations and effects were unbiased,and the detection power of epistatic mapping was largely affected by population size,heritability of epistasis,and the amount and distribution of genetic effects.When the same likelihood of odd(LOD) threshold was used,detection power of QTL was higher in F2 population than power in DH population;meanwhile FDR in F2 was also higher than that in DH.The increase of marker density from 10 cM to 5 cM led to similar detection power but higher FDR.In simulated populations,ICIM achieved better mapping results than multiple interval mapping(MIM) in estimation of QTL positions and effect.At the end,we gave epistatic mapping results of ICIM in one actual population in rice(Oryza sativa L.).  相似文献   

5.
Malmberg RL  Held S  Waits A  Mauricio R 《Genetics》2005,171(4):2013-2027
The extent to which epistasis contributes to adaptation, population differentiation, and speciation is a long-standing and important problem in evolutionary genetics. Using recombinant inbred (RI) lines of Arabidopsis thaliana grown under natural field conditions, we have examined the genetic architecture of fitness-correlated traits with respect to epistasis; we identified both single-locus additive and two-locus epistatic QTL for natural variation in fruit number, germination, and seed length and width. For fruit number, we found seven significant epistatic interactions, but only two additive QTL. For seed germination, length, and width, there were from two to four additive QTL and from five to eight epistatic interactions. The epistatic interactions were both positive and negative. In each case, the magnitude of the epistatic effects was roughly double that of the effects of the additive QTL, varying from -41% to +29% for fruit number and from -5% to +4% for seed germination, length, and width. A number of the QTL that we describe participate in more than one epistatic interaction, and some loci identified as additive also may participate in an epistatic interaction; the genetic architecture for fitness traits may be a network of additive and epistatic effects. We compared the map positions of the additive and epistatic QTL for germination, seed width, and seed length from plants grown in both the field and the greenhouse. While the total number of significant additive and epistatic QTL was similar under the two growth conditions, the map locations were largely different. We found a small number of significant epistatic QTL x environment effects when we tested directly for them. Our results support the idea that epistatic interactions are an important part of natural genetic variation and reinforce the need for caution in comparing results from greenhouse-grown and field-grown plants.  相似文献   

6.
C. Li  W. Zuo  X. Tong  H. Hu  L. Qiao  J. Song  G. Xiong  R. Gao  F. Dai  C. Lu 《Animal genetics》2015,46(4):426-432
The silkworm, Bombyx mori, is an economically important insect that was domesticated more than 5000 years ago. Its major economic traits focused on by breeders are quantitative traits, and an accurate and efficient QTL mapping method is necessary to explore their genetic architecture. However, current widely used QTL mapping models are not well suited for silkworm because they ignore female achiasmate and gender effects. In this study, we propose a composite method combining rational population selection and special mapping methods to map QTL in silkworm. By determining QTL for cocoon shell weight (CSW), we demonstrated the effectiveness of this method. In the CSW mapping process, only 56 markers were used and five loci or chromosomes were detected, more than in previous studies. Additionally, loci on chromosomes 1 and 11 dominated and accounted for 35.10% and 15.03% of the phenotypic variance respectively. Unlike previous studies, epistasis was detected between loci on chromosomes 11 and 22. These mapping results demonstrate the power and convenience of this method for QTL mapping in silkworm, and this method may inspire the development of similar approaches for other species with special genetic characteristics.  相似文献   

7.
It has long been recognized that epistasis or interactions between non-allelic genes plays an important role in the genetic control and evolution of quantitative traits. However, the detection of epistasis and estimation of epistatic effects are difficult due to the complexity of epistatic patterns, insufficient sample size of mapping populations and lack of efficient statistical methods. Under the assumption of additivity of QTL effects on the phenotype of a trait in interest, the additive effect of a QTL can be completely absorbed by the flanking marker variables, and the epistatic effect between two QTL can be completely absorbed by the four marker-pair multiplication variables between the two pairs of flanking markers. Based on this property, we proposed an inclusive composite interval mapping (ICIM) by simultaneously considering marker variables and marker-pair multiplications in a linear model. Stepwise regression was applied to identify the most significant markers and marker-pair multiplications. Then a two-dimensional scanning (or interval mapping) was conducted to identify QTL with significant digenic epistasis using adjusted phenotypic values based on the best multiple regression model. The adjusted values retain the information of QTL on the two current mapping intervals but exclude the influence of QTL on other intervals and chromosomes. Epistatic QTL can be identified by ICIM, no matter whether the two interacting QTL have any additive effects. Simulated populations and one barley doubled haploids (DH) population were used to demonstrate the efficiency of ICIM in mapping both additive QTL and digenic interactions.  相似文献   

8.
Quantitative trait loci (QTL) detection experiments have often been restricted to large biallelic populations. Use of connected multiparental crosses has been proposed to increase the genetic variability addressed and to test for epistatic interactions between QTL and the genetic background. We present here the results of a QTL detection performed on six connected F2 populations of 150 F2:3 families each, derived from four maize inbreds and evaluated for three traits of agronomic interest. The QTL detection was carried out by composite interval mapping on each population separately, then on the global design either by taking into account the connections between populations or not. Epistatic interactions between loci and with the genetic background were tested. Taking into account the connections between populations increased the number of QTL detected and the accuracy of QTL position estimates. We detected many epistatic interactions, particularly for grain yield QTL (R 2 increase of 9.6%). Use of connections for the QTL detection also allowed a global ranking of alleles at each QTL. Allelic relationships and epistasis both contribute to the lack of consistency for QTL positions observed among populations, in addition to the limited power of the tests. The potential benefit of assembling favorable alleles by marker-assisted selection are discussed.  相似文献   

9.
A population of 294 recombinant inbred lines (RIL) derived from Yuyu22, an elite maize hybrid extending broadly in China, has been constructed to investigate the genetic basis of grain yield, and associated yield components in maize. The main-effect quantitative trait loci (QTL), digenic epistatic interactions, and their interactions with the environment for grain yield and its three components were identified by using the mixed linear model approach. Thirty-two main-effect QTL and forty-four pairs of digenic epistatic interactions were detected for the four measured traits in four environments. Our results suggest that both additive effects and epistasis (additive × additive) effects are important genetic bases of grain yield and its components in the RIL population. Only 30.4% of main-effect QTL for ear length were involved in epistatic interactions. This implies that many loci in epistatic interactions may not have significant effects for traits alone but may affect trait expression by epistatic interaction with the other loci.  相似文献   

10.
水稻株高上位性效应和QE互作效应的QTL遗传研究   总被引:3,自引:0,他引:3  
利用基因混合模型的QTL定位方法研究了由籼稻品种IR64和粳稻品种Azucena杂交衍生的DH群体在4个环境中的QTL上位性效应和环境互作效应,结果表明,上位性是数量性状的重要遗传基础,并揭示了上位性的几个重要特点,所有的QTL都参与了上位性效应的形成,64%的QTL还具有本身的加性效应,因此传统方法对QTL加性效应的估算会由于上位性的影响而有偏,其他36%的QTL没有本身的加性效应,却参与了48%的上位性互作用,这些位点可能通过诱发和修饰其他位点而起作用,上位性的特点还包括,经常发现了一个QTL与多个QTL发生互作;大效应的QTL也参与上位性互作;上位性互作受环境影响,QTL与环境的互效应比QTL的主效应更多地被检测到,表明数量性状基因的表达易受环境影响。  相似文献   

11.
 We have mapped QTLs (quantitative trait loci) for an adaptive trait, flowering time, in a selfing annual, Arabidopsis thaliana. To obtain a mapping population we made a cross between an early-summer, annual strain, Li-5, and an individual from a late over-wintering natural population, Naantali. From the backcross to Li-5 298 progeny were grown, of which 93 of the most extreme individuals were genotyped. The data were analysed with both interval mapping and composite interval mapping methods to reveal one major and six minor QTLs, with at least one QTL on each of the five chromosomes. The QTL on chromosome 4 was a major one with an effect of 17.3 days on flowering time and explaining 53.4% of the total variance. The others had effects of at most 6.5 days, and they accounted for only small portions of the variance. Epistasis was indicated between one pair of the QTLs. The result of finding one major QTL and little epistasis agrees with previous studies on flowering time in Arabidopsis thaliana and other species. That several QTLs were found was expected considering the large number of possible candidate loci. In the light of the suggested genetic models of gene action at the candidate loci, epistasis was to be expected. The data showed that major QTLs for adaptive traits can be detected in non-domesticated species. Received: 15 January 1997/Accepted: 21 February 1997  相似文献   

12.
The genetic architecture of Drosophila sensory bristle number   总被引:2,自引:0,他引:2  
Dilda CL  Mackay TF 《Genetics》2002,162(4):1655-1674
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits.  相似文献   

13.
Yang R  Gao H  Wang X  Zhang J  Zeng ZB  Wu R 《Genetics》2007,177(3):1859-1870
Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age.  相似文献   

14.
Several quantitative trait loci (QTL) mapping strategies can successfully identify major-effect loci, but often have poor success detecting loci with minor effects, potentially due to the confounding effects of major loci, epistasis, and limited sample sizes. To overcome such difficulties, we used a targeted backcross mapping strategy that genetically eliminated the effect of a previously identified major QTL underlying high-temperature growth (Htg) in yeast. This strategy facilitated the mapping of three novel QTL contributing to Htg of a clinically derived yeast strain. One QTL, which is linked to the previously identified major-effect QTL, was dissected, and NCS2 was identified as the causative gene. The interaction of the NCS2 QTL with the first major-effect QTL was background dependent, revealing a complex QTL architecture spanning these two linked loci. Such complex architecture suggests that more genes than can be predicted are likely to contribute to quantitative traits. The targeted backcrossing approach overcomes the difficulties posed by sample size, genetic linkage, and epistatic effects and facilitates identification of additional alleles with smaller contributions to complex traits.  相似文献   

15.
Libraries of near-isogenic lines (NILs) are a powerful plant genetic resource to map quantitative trait loci (QTL). Nevertheless, QTL mapping with NILs is mostly restricted to genetic main effects. Here we propose a two-step procedure to map additive-by-additive digenic epistasis with NILs. In the first step, a generation means analysis of parents, their F1 hybrid, and one-segment NILs and their triple testcross (TTC) progenies is used to identify in a one-dimensional scan loci exhibiting QTL-by-background interactions. In a second step, one-segment NILs with significant additive-by-additive background interactions are used to produce particular two-segment NILs to test for digenic epistatic interactions between these segments. We evaluated our approach by analyzing a random subset of a genomewide Arabidopsis thaliana NIL library for growth-related traits. The results of our experimental study illustrated the potential of the presented two-step procedure to map additive-by-additive digenic epistasis with NILs. Furthermore, our findings suggested that additive main effects as well as additive-by-additive digenic epistasis strongly influence the genetic architecture underlying growth-related traits of A. thaliana.  相似文献   

16.
Grain protein content in wheat (Triticum aestivum L.) is generally considered a highly heritable character that is negatively correlated with grain yield and yield-related traits. Quantitative trait loci (QTL) for protein content was mapped using data on protein content and protein content conditioned on the putatively interrelated traits to evaluate possible genetic interrelationships between protein content and yield, as well as yield-related traits. Phenotypic data were evaluated in a recombinant inbred line population with 302 lines derived from a cross between the Chinese cultivar Weimai 8 and Luohan 2. Inclusive composite interval mapping using IciMapping 3.0 was employed for mapping unconditional and conditional QTL with additives. A strong genetic relationship was found between protein content and grain yield, and yield-related traits. Unconditional QTL mapping analysis detected seven additive QTL for protein content, with additive effects ranging in absolute size from 0.1898% to 0.3407% protein content, jointly accounting for 43.45% of the trait variance. Conditional QTL mapping analysis indicated two QTL independent from yield, which can be used in marker-assisted selection for increasing yield without affecting grain protein content. Three additional QTL with minor effects were identified in the conditional mapping. Of the three QTLs, two were identified when protein content was conditioned on yield, which had pleiotropic effects on those two traits. Conditional QTL mapping can be used to dissect the genetic interrelationship between two traits at the individual QTL level for closely correlated traits. Further, conditional QTL mapping can reveal additional QTL with minor effects that are undetectable in unconditional mapping.  相似文献   

17.
Common smut in maize, caused by Ustilago maydis, reduces grain yield greatly. Agronomic and chemical approaches to control such diseases are often impractical or ineffective. Resistance breeding could be an efficient approach to minimize the losses caused by common smut. In this study, quantitative trait loci (QTL) for resistance to common smut in maize were identified. In 2005, a recombinant inbred line (RIL) population along with the resistant (Zong 3) and susceptible (87-1) parents were planted in Beijing and Zhengzhou. Significant genotypic variation in resistance to common smut was observed at both locations after artificial inoculation by injecting inoculum into the whorl of plants with a modified hog vaccinator. Basing on a genetic map containing 246 polymorphic SSR markers with an average linkage distance of 9.11 cM, resistance QTL were analysed by composite interval mapping. Six additive-effect QTL associated with resistance to common smut were identified on chromosomes 3 (three QTL), 5 (one QTL) and 8 (two QTL), and explained 3.2% to 12.4% of the phenotypic variation. Among the 6 QTL, 4 showed significant QTL x environment (Q x E) interaction effects, which accounted for 1.2% to 2.5% of the phenotypic variation. Nine pairs of epistatic interactions were also detected, involving 18 loci distributed on all chromosomes except 2, 6 and 10, which contributed 0.8% to 3.0% of the observed phenotypic variation. However, no significant epistasis x environment interactions were detected. In total, additive QTL effects and Q x E interactions explained 38.8% and 8.0% of the phenotypic variation, respectively. Epistatic effects contributed 15% of the phenotypic variation. The results showed that besides the additive QTL, both epistasis and Q x E interactions formed an important genetic basis for the resistance to Ustilago maydis in maize.  相似文献   

18.
The productivity of sorghum is mainly determined by quantitative traits such as grain yield and stem sugar-related characteristics. Substantial crop improvement has been achieved by breeding in the last decades. Today, genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement. We have investigated QTL associated with the sugar components (Brix, glucose, sucrose, and total sugar content) and sugar-related agronomic traits (flowering date, plant height, stem diameter, tiller number per plant, fresh panicle weight, and estimated juice weight) in four different environments (two locations) using a population of 188 recombinant inbred lines (RILs) from a cross between grain (M71) and sweet sorghum (SS79). A genetic map with 157 AFLP, SSR, and EST-SSR markers was constructed, and several QTLs were detected using composite interval mapping (CIM). Further, additive × additive interaction and QTL × environmental interaction were estimated. CIM identified more than five additive QTLs in most traits explaining a range of 6.0–26.1% of the phenotypic variation. A total of 24 digenic epistatic locus pairs were identified in seven traits, supporting the hypothesis that QTL analysis without considering epistasis can result in biased estimates. QTLs showing multiple effects were identified, where the major QTL on SBI-06 was significantly associated with most of the traits, i.e., flowering date, plant height, Brix, sucrose, and sugar content. Four out of ten traits studied showed a significant QTL × environmental interaction. Our results are an important step toward marker-assisted selection for sugar-related traits and biofuel yield in sorghum.  相似文献   

19.
大白菜部分形态性状的QTL定位与分析   总被引:13,自引:0,他引:13  
于拴仓  王永健  郑晓鹰 《遗传学报》2003,30(12):1153-1160
应用352个标记位点的大白菜AFLP和RAPD图谱和一套栽培品种间杂交获得的重组自交系群体,采用复合区间作图的方法对大白菜9个形态性状进行QTL定位及遗传效应研究。在14个连锁群上检测到50个QTL:其中控制株型的QTL有5个;控制株高的QTL有6个;控制开展度的QTL有5个;控制最大叶长的QTL有7个;控制最大叶宽的QTL有4个;控制叶形指数的QTL有6个;控制中肋长的QTL有7个;控制中肋宽的QTL有4个;控制抽苔的QTL有6个。另外,估算了单个QTL的遗传贡献率和加性效应。这将为大白菜品种改良中形态性状的分子标记辅助选择提供理论依据。  相似文献   

20.
Test weight is an important trait in maize breeding. Understanding the genetic mechanism of test weight is important for effective selection of maize test weight improvement. In this study, quantitative trait loci (QTL) for maize test weight were identified. In the years 2007 and 2008, a F2:3 population along with the parents Chang7-2 and Zheng58 were planted in Zhengzhou, People’s Republic of China. Significant genotypic variation for maize test weight was observed in both years. Based on the genetic map containing 180 polymorphic SSR markers with an average linkage distance of 11.0 cM, QTL for maize test weight were analysed by mixed-model composite interval mapping. Five QTL, including four QTL with only additive effects, were identified on chromosomes 1, 2, 3, 4 and 5, and together explained 25.2% of the phenotypic variation. Seven pairs of epistatic interactions were also detected, involving 11 loci distributed on chromosomes 1, 2, 3, 4, 5 and 7, respectively, which totally contributed 18.2% of the phenotypic variation. However, no significant QTL × environment (Q×E) interaction and epistasis × environment interaction effects were detected. The results showed that besides the additive QTL, epistatic interactions also formed an important genetic basis for test weight in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号