首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Individual nonesterified fatty acids were bound to albumin in vitro and these fatty acid albumin complexes were used to study their effect on lipid peroxidation in liver microsomes. Peroxidation was induced by various methods and malondialdehyde (MDA) was measured as an index of peroxidation. Among the fatty acids tested, albumin-bound monounsaturated fatty acids showed more inhibition of peroxidation as compared to other fatty acids. Increasing the concentration of iron in the peroxidizing system, partially reversed the inhibition by fatty acids. Moreover, albumin-bound fatty acid did not inhibit iron independent peroxidation. This suggests that, like nonesterified fatty acids, albumin-bound fatty acids inhibit peroxidation by chelating the iron. Albumin fatty acid complex, similar to the fatty acid composition present in the circulating albumin, also showed inhibition of peroxidation. These data indicate that nonesterified fatty acids even when bound to albumin are capable of inhibiting peroxidation and circulating albumin, which contains various fatty acids bound to it, may impart some antioxidant effect in addition to other plasma antioxidants.  相似文献   

4.
A method is described for the determination of nonesterified fatty acids in plasma. Extraction is at least 98% efficient, and losses during subsequent stages are corrected for by the use of an internal radioactive standard. The method is suitable for reference purposes rather than for routine determinations. Higher values are obtained than by other methods of analysis, and it is suggested that some plasma fatty acids remain protein-bound after normal methods of extraction.  相似文献   

5.
Insulin increases plasma nonesterified fatty acid (NEFA) clearance in humans, but whether this is independent of change in plasma NEFA appearance is currently unknown. Nine nondiabetic men (age: 28+/-3 yr, body mass index: 27.2+/-1.7 kg/m2) underwent euglycemic clamps to maintain low (LINS) vs. high (HINS) physiological insulin levels for 6 h. An intravenous infusion of heparin+Intralipid (HI) was performed during 4 of the 6 h of the clamps (in the last 4 h at LINS and in the first 4 h at HINS), whereas saline infusion (SAL) was administered in the remaining 2 h to modulate plasma NEFA levels independently of plasma insulin levels. Four experimental conditions were obtained in each individual: LINS with saline (LINS/SAL) and with HI infusion (LINS/HI) and HINS with saline (HINS/SAL) and with HI infusion (HINS/HI). Plasma palmitate appearance during HINS/SAL was lower than during the three other experimental conditions (P<0.05). In contrast, plasma linoleate appearance, as expected, was increased by HI independently of insulin level (P<0.02). Plasma palmitate clearance during HINS/SAL was higher than LINS/SAL and LINS/HI (P<0.008), and this increase was blunted during HINS/HI. We observed a linear decrease in plasma palmitate clearance with increasing plasma NEFA appearance independent of insulin levels. Plasma NEFA levels increased exponentially with increase in plasma NEFA appearance. We conclude that insulin stimulates plasma NEFA clearance by reducing the endogenous appearance rate of NEFA. The relationship between plasma NEFA level and appearance rate is nonlinear.  相似文献   

6.
Analysis of plasma nonesterified fatty acids (NEFA) by gas-liquid chromatography requires procedures that are both lengthy and cumbersome. A 45-min direct methylation procedure was carried out at 24-29 degrees C on 150 microliter of plasma added with an internal standard in 5.0 ml of methanol-acetyl chloride 50:1 (v/v). To stop the reaction, 3 ml of 6.0% K2CO3 was added. After addition of 150 microliter of hexane, shaking and centrifugation, an aliquot of the upper phase was injected into the gas chromatograph. The specificity of the methylation reaction for NEFA without hydrolysis of other classes of plasma lipids was substantiated with appropriate standards. This one-step specific methylation procedure is superior to currently used methods.  相似文献   

7.
We tested the hypothesis that beta2- and beta3-adrenergic receptor-mediated increases in brain tryptophan are due to the liberation of fatty acids, which in turn displace tryptophan from its albumin-binding site and thus facilitate its entry into the brain. Male CD-1 mice were injected with subtype-selective beta-adrenergic agonists 1h before brain samples were collected for analysis of tryptophan content by HPLC with electrochemical detection, and blood samples were collected for analysis of total and free tryptophan and nonesterified fatty acid (NEFA) concentrations. The beta2-selective agonist, clenbuterol (0.1 mg/kg), increased concentrations of tryptophan in all brain regions studied and decreased plasma total tryptophan, but had no effect on plasma free tryptophan or NEFAs. The beta3-selective agonists, BRL 37344 (0.2 mg/kg) or CL 316243 (0.01 mg/kg), increased brain tryptophan, plasma NEFAs and free tryptophan. Pretreatment with nicotinic acid (500 mg/kg), an inhibitor of lipolysis, almost completely prevented the increase in plasma free tryptophan and NEFAs, and attenuated the increase in brain tryptophan induced by CL 316243. These results suggest that beta2- and beta3-adrenergic agonists increase brain tryptophan by a mechanism other than the liberation of NEFAs. Nonetheless, beta3-adrenergic agonists appear to increase brain tryptophan by a mechanism that may depend partially on elevations of plasma NEFAs.  相似文献   

8.
This study reports a novel protocol to increase plasma monounsaturated, polyunsaturated, and saturated nonesterified fatty acids (NEFA) in eight healthy volunteers (age 29-54 yr, body mass index 23-26 kg/m(2)). This was achieved by feeding small boluses of fat at different time points (35 g at 0 min and 8 g at 30, 60, 90, 120, 150, 180, and 210 min) in combination with a continuous low-dose heparin infusion. Olive oil, safflower oil, or palm stearin were used to increase monounsaturated, polyunsaturated, or saturated NEFAs, respectively. Plasma NEFA concentrations were increased for 2 h, when fat and heparin were given (olive oil: 745 +/- 35 micromol/l; safflower oil: 609 +/- 37 micromol/l, and palm stearin: 773 +/- 38 micromol/l) compared with the control test (no fat and no heparin: 445 +/- 41 micromol/l). During the heparin infusion, 18:1 n-9 was the most abundant fatty acid for the olive oil test compared with 18:2 n-6 for the safflower oil test and 16:0 for the palm stearin test (P < 0.01). The method described here successfully increases several types of plasma NEFA concentrations and could be used to investigate differential effects of elevated individual NEFAs on metabolic processes.  相似文献   

9.
10.
11.
Elevated plasma levels of factors with cardiac glycoside-like activity have been implicated in the response to volume expansion in animals and in the pathogenesis of certain human diseases. We recently described four fractions (IR1, EI1, EI2, EI3) from normal human plasma that inhibit NaK-ATPase, displace ouabain from the enzyme, and exhibit digoxin-like immunoreactivity (Kelly, R. A., O'Hara, D. S., Canessa, M. L., Mitch, W. E., and Smith, T. W. (1985) J. Biol. Chem. 260, 11396-11405). In this report, we identify the active component of these plasma fractions as long-chain nonesterified fatty acids (NEFA) and lysophospholipids. These lipids were present in fractions EI1, EI2, and EI3 in quantities sufficient to account for all of the NaK-ATPase inhibitory activity. The digoxin-like immunoreactivity in fraction IR1 could be attributed to hydrocortisone and other endogenous steroids. To explore the nature of the lipid-NaK-ATPase interactions, we examined the effects of various ATP or sodium concentrations on the NaK-ATPase activity measured in the presence of NEFA. Varying sodium did not affect the inhibition of NaK-ATPase by linoleic acid. At less than 0.15 mM ATP, linoleic acid stimulated NaK-ATPase, but at higher ATP concentrations, the enzyme was progressively inhibited. In summary, NEFA and lysophospholipids, at levels similar to those occurring in human plasma, may account for all of the NaK-ATPase inhibitory activity observed in human plasma fractions. These lipids probably do not directly regulate NaK-ATPase in vivo under normal physiologic conditions, but may alter the sodium pump in disease states characterized by abnormalities in lipid metabolism or plasma protein binding.  相似文献   

12.
Both 86Rb+ efflux experiments and electrophysiological studies have shown that arachidonic acid and other nonesterified fatty acids activate ATP-sensitive K+ channels in insulinoma cells (HIT-T15). Activation was observed with arachidonic, oleic, linoleic, and docosahexaenoic acid but not with myristic, stearic, and elaidic acids. Fatty acid activation of ATP-sensitive K+ channels was blocked by antidiabetic sulfonylureas such as glibenclamide. The activating effect of arachidonic acid was unaltered by indomethacin and by nordihydroguaiaretic acid, indicating that it is not due to metabolites of arachidonic acid via cyclooxygenase or lipoxygenase pathways. Moreover, the nonmetabolizable analogue of arachidonic acid, eicosatetraynoic acid, was an equally potent activator. Activation of ATP-sensitive K+ channels by fatty acids was potentiated by diacylglycerol and was inhibited by calphostin C, an inhibitor of protein kinase C. These findings indicate that fatty acid activation of ATP-sensitive K+ channels is most likely due to the participation of arachidonic acid (and other fatty acid)-activated protein kinase C isoenzymes. Activation of ATP-sensitive K+ channels by nonesterified fatty acids is not involved in the control of insulin secretion since arachidonic acid stimulates insulin secretion from insulinoma cells instead of inhibiting it.  相似文献   

13.
The present report describes a one-step method for the derivatization and extraction of nonesterified fatty acids in plasma with subsequent analysis by conventional capillary gas-liquid chromatography or gas-liquid chromatography-mass spectrometry. The procedure requires 200 microliters of citrated plasma, dilution with 200 microliters of methanol containing a suitable internal standard, and rapid methylation (10 min) with ethereal diazomethane. An aliquot (60%) of the ether layer is subsequently removed, taken to dryness with nitrogen gas, and the residue is dissolved in a small volume of hexane (usually 50 microliters) for chromatographic analysis (taking 1 microliter for on-column injection). Samples are ready for analysis within 15 min after initial preparation of the plasma. The method has been found to be simple and rapid, providing clean fatty acid profiles. Although the method has been tested with 200 microliters of rat and human plasma, it can easily be adapted to a 40 microliters plasma sample if the esterified plasma extract is suspended in a smaller volume of hexane and/or a larger aliquot of the extract were to be injected into the gas chromatograph through use of a splitless injector.  相似文献   

14.
15.
16.
The effect of unsaturated and saturated nonesterified fatty acids (NEFAs) on the electrophoretic, immunological, and steroid-binding properties of human sex hormone-binding protein (SBP) were investigated. Tests were carried out on whole serum from pregnant women and on purified SBP using polyacrylamide gel electrophoresis, crossed immunoelectrophoresis with autoradiography, and equilibrium dialysis. All three methods showed that NEFAs influence the binding of sex steroids to SBP both in whole serum and with the purified protein. Saturated NEFAs caused a 1.5-2-fold increase in binding of dehydrotestosterone, testosterone, and estradiol to SBP, while unsaturated NEFAs, such as oleic (18:1) and docosahexaenoic (22:6) acids inhibited the binding of these steroids to SBP. Thus, unsaturated NEFAs in the concentration range 1-100 microM are more inhibitory for estradiol binding than for testosterone or dehydrotestosterone binding. In addition to these binding changes, polyacrylamide gel electrophoresis and immunoelectrophoretic studies revealed a shift in SBP from the slow-moving active native form to a fast-moving inactive one. There was also a reduction in the apparent SBP concentration by Laurell immunoelectrophoresis in the presence of unsaturated NEFA (5.5 nmol of NEFA/pmol of protein). These studies indicate that unsaturated NEFAs induce conformational changes in human SBP which are reflected in its electrophoretic, immunological, and steroid-binding properties. They suggest that the fatty acid content of the SBP environment may result in lower steroid hormone binding and thus increased free hormone levels.  相似文献   

17.
High concentrations of nonesterified fatty acids (NEFA) are a risk factor for developing type 2 diabetes in Pima Indians. In vitro and in vivo, chronic elevation of NEFA decreases glucose-stimulated insulin secretion. We hypothesized that high fasting plasma NEFA would increase the risk of type 2 diabetes by inducing a worsening of glucose-stimulated insulin secretion in Pima Indians. To test this hypothesis, fasting plasma NEFA concentrations, body composition, insulin action (M), acute insulin response (AIR, 25-g IVGTT), and glucose tolerance (75-g OGTT) were measured in 151 Pima Indians [107 normal glucose tolerant (NGT), 44 impaired glucose tolerant (IGT)] at the initial visit. These subjects, participants in ongoing studies of the pathogenesis of obesity and type 2 diabetes, had follow-up measurements of body composition, glucose tolerance, M, and AIR. In NGT individuals, cross-sectionally, high fasting plasma NEFA concentrations at the initial visit were negatively associated with AIR after adjustment for age, sex, percent body fat, and M (P = 0.03). Longitudinally, high fasting plasma NEFA concentrations at the initial visit were not associated with change in AIR. In individuals with IGT, cross-sectionally, high fasting plasma NEFA concentrations at the initial visit were not associated with AIR. Longitudinally, high fasting plasma NEFA concentrations at the initial visit were associated with a decrease in AIR before (P < 0.0001) and after adjustment for sex, age at follow-up, time of follow-up, change in percent body fat and insulin sensitivity, and AIR at the initial visit (P = 0.0006). In conclusion, findings in people with NGT indicate that fasting plasma NEFA concentrations are not a primary etiologic factor for beta-cell failure. However, in subjects who have progressed to a state of IGT, chronically elevated NEFA seem to have a deleterious effect on insulin-secretory capacity.  相似文献   

18.
19.
20.
Peripheral neuropathy develops in human subjects with prediabetes and metabolic syndrome before overt hyperglycemia. The contributions of impaired glucose tolerance and insulin signaling, hypertriglyceridemia and/or increased nonesterified fatty acids (NEFA), and hypercholesterolemia to this condition remain unknown. Niacin and its derivatives alleviate dyslipidemia with a minor effect on glucose homeostasis. This study evaluated the roles of impaired glucose tolerance versus dyslipidemia in prediabetic neuropathy using Zucker fatty (fa/fa) rats and the niacin derivative acipimox, as well as the interplay of hypertriglyceridemia, increased NEFA, and oxidative-nitrosative stress. Sixteen-week-old Zucker fatty rats with impaired glucose tolerance, obesity, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and increased NEFA displayed sensory nerve conduction velocity deficit, thermal and mechanical hypoalgesia, and tactile allodynia. Acipimox (100 mg kg(-1) day(-1), 4 weeks) reduced serum insulin, NEFA, and triglyceride concentrations without affecting glucose tolerance and hypercholesterolemia. It alleviated sensory nerve conduction velocity deficit and changes in behavioral measures of sensory function and corrected oxidative-nitrosative stress, but not impaired insulin signaling, in peripheral nerve. Elevated NEFA increased total and mitochondrial superoxide production and NAD(P)H oxidase activity in cultured human Schwann cells. In conclusion, hypertriglyceridemia and/or increased NEFA concentrations cause prediabetic neuropathy through oxidative-nitrosative stress. Lipid-lowering agents and antioxidants may find a use in the management of this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号