首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar Typhimurium DT160, were subjected to Salmonella gene microarray and suppression subtractive hybridization analyses. Their genome contents were compared with those of coexisting sporadic strains matched by serotype, geographic and temporal distribution, and host species origin. These paired comparisons revealed that epidemic strains of S. enterica had specific genes and gene regions that were shared by isolates of the same subtype. Most of these gene sequences are related to mobile genetic elements, including phages, plasmids, and plasmid-like and transposable elements, and some genes may encode proteins conferring growth or survival advantages. The emergence of epidemic MDR strains may therefore be associated with the presence of fitness-associated genetic factors in addition to their antimicrobial resistance genes.  相似文献   

2.
Salmonella enterica serotype Newport is an important cause of non-typhoidal salmonellosis, a clinically less severe infection than typhoid fever caused by S. enterica serotype Typhi. In this investigation, the virulence genotypes of S. enterica Newport isolated from a backwater environment were compared with Salmonella Typhi from clinical cases in the same region where salmonellosis is endemic. Genotyping was done by PCR screening for virulence markers associated with Salmonella pathogenicity islands (SPIs) and plasmids. The virulence genes associated with SPIs I–VI were detected in 95–100% of all the isolates, while the viaB locus representing SPI-7 was detectable in 66 and 73% of the environmental and clinical isolates, respectively. A significant number of Salmonella Newport lacked virulence genes shdA and sopE compared to S. Typhi. All S. Typhi and S. Newport isolates lacked large plasmid-borne virulence genes spvR and pefA. Further investigations into the antimicrobial resistance of S. Newport revealed multiple drug resistance to ampicillin, amoxicillin/clavulanic acid, trimethorprim-sulfamethoxazole, chloramphenicol, tetracycline, cephalothin, and cephalexin. In comparison, S. Typhi were susceptible to all clinically relevant antimicrobials. The results of this study will help in understanding the spread of virulence genotypes and antibiotic resistance in S. Newport in the region of study.  相似文献   

3.

Background  

Salmonella is a highly successful parasite of reptiles, birds and mammals. Its ability to infect and colonise such a broad range of hosts coincided with the introduction of new genetic determinants, among them 5 major pathogeniCity islands (SPI1-5), into the Salmonella genome. However, only limited information is available on how each of these pathogeniCity islands influences the ability of Salmonella to infect chickens. In this study, we therefore constructed Salmonella Enteritidis mutants with each SPI deleted separately, with single individual SPIs (i.e. with the remaining four deleted) and a mutant with all 5 SPIs deleted, and assessed their virulence in one-day-old chickens, together with the innate immune response of this host.  相似文献   

4.
沙门菌是一种重要的人兽共患食源性病原菌。其感染宿主后可以凭借独特的免疫逃逸机制逃避宿主免疫系统的清除,潜伏在宿主体内1年至终身不等,从而建立持续性感染。沙门菌持续性感染与毒力岛密切相关,尤其是沙门菌毒力岛(Salmonella pathogenicity islands,SPIs) SPI-1和SPI-2。SPI-1效应蛋白SipB和SipC等以不同的途径影响细菌入侵,诱导细胞自噬或者凋亡;而SPI-2效应蛋白SseI和SseL等可以通过调控不同的信号通路协助沙门菌的胞内存活,为沙门菌持续性感染的发生和发展提供条件。本文主要阐述SipB和SseI等毒力岛效应蛋白在沙门菌持续性感染过程中的作用,同时总结了SPI-6、SPI-7和SPI-19等毒力岛的作用,以期为研究沙门菌持续性感染提供新思路。  相似文献   

5.
The increased occurrence of Salmonella occurrence in local indigenous vegetables and poultry meat can be a potential health hazards. This study is aimed to detect the prevalence of twenty different virulence factors among Salmonella enterica strains isolated from poultry and local indigenous vegetables in Malaysia via an optimized, rapid and specific multiplex PCR assay. The assay encompasses a total of 19 Salmonella pathogenicity islands genes and a quorum sensing gene (sdiA) in three multiplex reaction sets. A total of 114 Salmonella enterica isolates belonging to 38 different serovars were tested. Each isolate in under this study was found to possess up to 70% of the virulence genes tested and exhibited variable pathogenicity gene patterns. Reproducibility of the multiplex PCR assay was found to be 100% and the detection limit of the optimized multiplex PCR was tested with lowest detectable concentration of DNA 0.8 pg μl−1. This study demonstrated various Salmonella pathogenicity island virulence gene patterns even within the same serovar. This sets of multiplex PCR system provide a fast and reliable typing approach based on Salmonella pathogenicity islands, thus enabling an effective monitoring of emerging pathogenic Salmonella strains as an additional tool in Salmonella surveillance studies.  相似文献   

6.

Background  

The bacterium Salmonella enterica includes a diversity of serotypes that cause disease in humans and different animal species. Some Salmonella serotypes show a broad host range, some are host restricted and exclusively associated with one particular host, and some are associated with one particular host species, but able to cause disease in other host species and are thus considered "host adapted". Five Salmonella genome sequences, representing a broad host range serotype (Typhimurium), two host restricted serotypes (Typhi [two genomes] and Paratyphi) and one host adapted serotype (Choleraesuis) were used to identify core genome genes that show evidence for recombination and positive selection.  相似文献   

7.
8.

Background

The species Salmonella enterica (S. enterica) includes many serovars that cause disease in avian and mammalian hosts. These serovars differ greatly in their host range and their degree of host adaptation. The host specificity of S. enterica serovars appears to be a complex phenomenon governed by multiple factors acting at different stages of the infection process, which makes identification of the cause/s of host specificity solely by experimental methods difficult.

Methodology/Principal Findings

In this study, we have employed a molecular evolution and phylogenetics based approach to identify genes that might play important roles in conferring host specificity to different serovars of S. enterica. These genes are ‘differentially evolved’ in different S. enterica serovars. This list of ‘differentially evolved’ genes includes genes that encode translocon proteins (SipD, SseC and SseD) of both Salmonella pathogenicity islands 1 and 2 encoded type three secretion systems, sptP, which encodes an effector protein that inhibits the mitogen-activated protein kinase pathway of the host cell, and genes which encode effector proteins (SseF and SifA) that are important in placing the Salmonella-containing vacuole in a juxtanuclear position.

Conclusions/Significance

Analysis of known functions of these ‘differentially evolved genes’ indicates that the products of these genes directly interact with the host cell and manipulate its functions and thereby confer host specificity, at least in part, to different serovars of S. enterica that are considered in this study.  相似文献   

9.
10.

Background  

Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol.  相似文献   

11.
12.
The O-polysaccharide of Salmonella Telaviv was obtained by mild acid degradation of the lipopolysaccharide and studied by chemical methods (sugar and methylation analyses, Smith degradation, de-O-acetylation) and NMR spectroscopy. The structure of the O-polysaccharide was established. The repeating units that are proximal to the lipopolysaccharide core region mostly have a digalactose side chain and lack glucose, whereas those at the other end of the chain mostly do bear glucose but are devoid of the disaccharide side chain. This is the first structure established for the O-polysaccharide of a Salmonella serogroup O:28 (formerly M) strain characterized by subfactors O281 and O282. Knowledge of this structure and the structure of the O-polysaccharide of Salmonella Dakar (O281, O283) established earlier is crucial for determination of the exact structures associated with subfactors O281, O282, and O283 and elucidation of the genetic basis of the close relationship between Escherichia coli O71 and S. enterica O:28 O-antigens.  相似文献   

13.
【背景】沙门氏菌(Salmonella spp.)是重要的人畜共患病原菌,其毒力和耐药性的不断增强引起广泛关注。【目的】了解从通辽市一犊牛死亡病例中所分离牛源都柏林沙门氏菌的毒力及耐药性情况。【方法】以病死犊牛肺脏为材料,经细菌分离纯化及16S rRNA基因测序,鉴定病原为沙门氏菌。采用动物试验、药敏试验和PCR方法对分离菌进行毒力、耐药性,以及毒力基因和耐药基因检测,并对其进行全基因组测序分析。【结果】分离菌具有较强毒力,对小鼠半数致死量为2.8×106 CFU/mL。分离菌为多重耐药菌,仅对多粘菌素B和噻孢霉素敏感,对强力霉素和恩诺沙星中度敏感。检测13种沙门氏菌常见毒力基因,检出率为92.3%。对分离菌进行全基因组测序分析,该菌株为都柏林沙门氏菌,基因组大小为4 965 370 bp,GC含量为52.12%,同时携带2个质粒,大小分别为79 524 bp (pTLS-1)和45 301 bp (pTLS-2)。分离菌中共携带996个毒力基因和24个毒力岛;共携带42个耐药基因,其中4个为可水平转移基因,基因组中存在9个可移动遗传元件,包括插入序列和转座子等。【结论】分离牛源都柏林沙门氏菌菌株具有较强毒力且为多重耐药株,携带大量毒力基因及耐药基因。  相似文献   

14.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

15.
The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Salmonella enterica serovar Typhimurium and Escherichia coli many Tat substrates are known or predicted to bind a molybdenum cofactor in the cytoplasm prior to export. In the case of N- and S-oxide reductases, co-ordination of molybdenum cofactor insertion with protein export involves a ‘Tat proofreading’ process where chaperones of the TorD family bind the signal peptides, thus preventing premature export. Here, a genetic approach was taken to determine factors required for selenate reductase activity in Salmonella and E. coli. It is reported for both biological systems that an active Tat translocase and a TorD-like chaperone (DmsD) are required for complete in vivo reduction of selenate to elemental red selenium. Further mutagenesis and in vitro biophysical experiments implicate the Salmonella ynfE gene product, and the E. coli YnfE and YnfF proteins, as putative Tat-targeted selenate reductases.  相似文献   

16.
Multiple sequencing of genomes belonging to a bacterial species allows one to analyze and compare statistics and dynamics of the gene complements of species, their pan-genomes. Here, we analyzed multiple genomes of Escherichia coli, Shigella spp., and Salmonella enterica. We demonstrate that the distribution of the number of genomes harboring a gene is well approximated by a sum of two power functions, describing frequent genes (present in many strains) and rare genes (present in few strains). The virtual absence of Shigella-specific genes not present in E. coli genomes confirms previous observations that Shigella is not an independent genus. While the pan-genome size is increasing with each new strain, the number of genes present in a fixed fraction of strains stabilizes quickly. For instance, slightly fewer than 4,000 genes are present in at least half of any group of E. coli genomes. Comparison of S. enterica and E. coli pan-genomes revealed the existence of a common periphery, that is, genes present in some but not all strains of both species. Analysis of phylogenetic trees demonstrates that rare genes from the periphery likely evolve under horizontal transfer, whereas frequent periphery genes may have been inherited from the periphery genome of the common ancestor.  相似文献   

17.

Background  

Salmonella enterica subspecies I includes several closely related serovars which differ in host ranges and ability to cause disease. The basis for the diversity in host range and pathogenic potential of the serovars is not well understood, and it is not known how host-restricted variants appeared and what factors were lost or acquired during adaptations to a specific environment. Differences apparent from the genomic data do not necessarily correspond to functional proteins and more importantly differential regulation of otherwise identical gene content may play a role in the diverse phenotypes of the serovars of Salmonella.  相似文献   

18.
We report isolation and characterization of the novel T4‐like Salmonella bacteriophage vB_SenM‐S16. S16 features a T‐even morphology and a highly modified 160 kbp dsDNA genome with 36.9 mol % G+C, containing 269 putative coding sequences and three tRNA genes. S16 is a virulent phage, and exhibits a maximally broad host range within the genus Salmonella, but does not infect other bacteria. Synthesis of functional S16 full‐length long tail fibre (LTF) in Escherichia coli was possible by coexpression of gp37 and gp38. Surface plasmon resonance analysis revealed nanomolar equilibrium affinity of the LTF to its receptor on Salmonella cells. We show that OmpC serves as primary binding ligand, and that S16 adsorption can be transferred to E. coli by substitution of ompC with the Salmonella homologue. S16 also infects ‘rough’ Salmonella strains which are defective in lipopolysaccharide synthesis and/or its carbohydrate substitution, indicating that this interaction does not require an intact LPS structure. Altogether, its virulent nature, broad host range and apparent lack of host DNA transduction render S16 highly suitable for biocontrol of Salmonella in foods and animal production. The S16 LTF represents a highly specific affinity reagent useful for cell decoration and labelling, as well as bacterial immobilization and separation.  相似文献   

19.
Chiu CH  Tang P  Chu C  Hu S  Bao Q  Yu J  Chou YY  Wang HS  Lee YS 《Nucleic acids research》2005,33(5):1690-1698
Salmonella enterica serovar Choleraesuis (S.Choleraesuis), a highly invasive serovar among non-typhoidal Salmonella, usually causes sepsis or extra-intestinal focal infections in humans. S.Choleraesuis infections have now become particularly difficult to treat because of the emergence of resistance to multiple antimicrobial agents. The 4.7 Mb genome sequence of a multidrug-resistant S.Choleraesuis strain SC-B67 was determined. Genome wide comparison of three sequenced Salmonella genomes revealed that more deletion events occurred in S.Choleraesuis SC-B67 and S.Typhi CT18 relative to S.Typhimurium LT2. S.Choleraesuis has 151 pseudogenes, which, among the three Salmonella genomes, include the highest percentage of pseudogenes arising from the genes involved in bacterial chemotaxis signal-transduction pathways. Mutations in these genes may increase smooth swimming of the bacteria, potentially allowing more effective interactions with and invasion of host cells to occur. A key regulatory gene of TetR/AcrR family, acrR, was inactivated through the introduction of an internal stop codon resulting in overexpression of AcrAB that appears to be associated with ciprofloxacin resistance. While lateral gene transfer providing basic functions to allow niche expansion in the host and environment is maintained during the evolution of different serovars of Salmonella, genes providing little overall selective benefit may be lost rapidly. Our findings suggest that the formation of pseudogenes may provide a simple evolutionary pathway that complements gene acquisition to enhance virulence and antimicrobial resistance in S.Choleraesuis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号