首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This experiment investigated the effects of nonpharmacological disruption on temporal discrimination. Pigeons responded on a multiple schedule composed of fixed interval, color-matching, and temporal-discrimination components. The effects of three different disruptors (prefeeding, intercomponent-interval food, and extinction) were assessed. All disruptors decreased response rates during the fixed interval. Prefeeding and intercomponent-interval food had unsystematic effects on response patterning during the fixed interval, whereas extinction increased the relative response rate in the initial portions of the fixed interval. Accuracy of color matching was decreased by prefeeding and was not systematically affected by intercomponent-interval food and extinction. In the temporal-discrimination component, all disruptors flattened the psychophysical functions relating proportion long responses to sample duration. This result indicates a general disruption of temporal discrimination. In addition, parameter estimates derived from the behavioral theory of timing indicated all disruptors decreased pacemaker rate, a result consistent with the predictions of the theory. These results highlight the similarities between disruption of temporal discrimination by pharmacological and nonpharmacological manipulations.  相似文献   

2.
The question of how temporal control of responding might be influenced by contingency changes in other contexts was investigated. Each of three pigeons first was exposed to a two-component multiple schedule in which a two-key free-operant psychophysical procedure operated in one component and a variable-interval schedule operated in the other component. The variable-interval schedule then was changed to extinction while the free-operant psychophysical procedure remained unchanged. Finally, the variable-interval schedule was reintroduced. Response rates on the left key and the estimated temporal threshold under the free-operant psychophysical procedure increased for each pigeon when the alternate component schedule was changed to extinction and then decreased again when the variable-interval schedule was reintroduced. The results suggest one way that temporal control is affected by its context, and may be interpreted through the direct effects of overall reinforcement rate on temporal control mechanisms or the disruptive effects of alternative sources of reinforcement on temporally controlled behavior.  相似文献   

3.
It is well known that there is a strong relationship among the environment, selection, and extinction, but the underlying role of genetics and genetic constraints in contributing to extinction is less appreciated. Integration of characters may enhance survivability for species, providing that selective pressure is parallel with the patterns of morphological integration. However, we hypothesize that, if the direction of selection shifts, integration may also prevent populations from responding quickly enough to the new directions of selection. This would lead to the inability to find a successful adaptive solution, causing downward pressure on the population, and ultimately, extinction. We test this model with a computer simulation, using an adaptive landscape model. We generate populations of varying levels of multivariate integration and generate selection pressures to test the ability of the populations to respond to selection both parallel and orthogonal to the axis of maximum variation. In these simulations, more highly integrated populations survived longer when selection was in the direction of maximum variation. However, when selection was closer to orthogonal to the axis of maximum variation, extinction was more rapid in highly integrated populations. These results suggest that integration may play a strong role in both survivability and extinction. Tightly integrated populations are highly persistent when selection pressure is close to the axis of maximum variation, which is expected to frequently be the case since integration is likely often a product of selection. However, these highly integrated taxa are more susceptible to extinction when the direction of selection shifts, and is closer to orthogonal to the axis of maximum variation.  相似文献   

4.
Species’ ranges are complex often exhibiting multidirectional shifts over space and time. Despite the strong fingerprint of recent historical climate change on species’ distributions, biotic factors such as loss of vegetative habitat and the presence of potential competitors constitute important yet often overlooked drivers of range dynamics. Furthermore, short‐term changes in environmental conditions can influence the underlying processes of local extinction and local colonization that drive range shifts, yet are rarely considered at broad scales. We used dynamic state‐space occupancy models to test multiple hypotheses of the relative importance of major drivers of range shifts of Golden‐winged Warblers (Vermivora chrysoptera) and Blue‐winged Warblers (V. cyanoptera) between 1983 and 2012 across North America: warming temperatures; habitat changes; and occurrence of congeneric species, used here as proxy for biotic interactions. Dynamic occupancies for both species were most influenced by spatial relative to temporal variation in temperature and habitat. However, temporal variation in temperature anomalies and biotic interactions remained important. The two biotic factors considered, habitat change and biotic interactions, had the largest relative effect on estimated extinction rates followed by abiotic temperature anomalies. For the Golden‐winged Warbler, the predicted presence of the Blue‐winged Warbler, a hypothesized competitor, most influenced extinction probabilities, contributing to evidence supporting its role in site‐level species replacement. Given the overall importance of biotic factors on range‐wide dynamic occupancies, their consideration alongside abiotic factors should not be overlooked. Our results suggest that warming compounds the negative effect of habitat loss emphasizing species’ need for habitat to adapt to a changing climate. Notably, even closely related species exhibited individual responses to abiotic and biotic factors considered.  相似文献   

5.
The distribution of last occurrences of fossil taxa in a stratigraphic column are used to infer the pattern, timing and tempo of extinction from the fossil record. Clusters of last occurrences are commonly interpreted as an abrupt pulse of extinction. However, stratigraphic architecture alone can produce clusters of last occurrences that can be misinterpreted as an extinction pulse. These clusters will typically occur in strata that immediately underlie facies changes and sequence‐stratigraphic surfaces. It has been proposed that a basin‐wide analysis of the fossil record within a sequence‐stratigraphic framework can be used to distinguish between clusters of last occurrences caused solely by extinction pulses from those generated by sequence‐stratigraphic architecture. A basin‐wide approach makes it possible to observe lateral facies shifts in response to sea‐level change, mitigating the effects of stratigraphic architecture. Using computer simulations of plausible Late Ordovician mass‐extinction scenarios tuned to an inferred Late Ordovician sea‐level curve, we show that stratigraphically‐generated clusters of last occurrences are observed even in basin‐wide analyses of the simulated fossil records due to the basin‐wide loss of preferred facies for many taxa. Nonetheless, we demonstrate that by coarsening the stratigraphic resolution to the systems‐tract level and identifying facies preferences of simulated taxa, we can filter out taxa whose last occurrences coincide with the basin‐wide loss of their preferred facies. This enables consistent identification of the underlying extinction pattern for a wide variety of extinction scenarios. Applying this approach to empirical field data can help to constrain underlying extinction patterns from the fossil record.  相似文献   

6.
The natural world is variable both in space and in time, but little ecological theory has been explicitly devoted to analyzing the consequences of both kinds of variability operating simultaneously. This issue is examined relative to the indirect interaction of apparent competition, which can limit the membership of prey communities. One limiting case that provides a useful starting point is to imagine that a local community is influenced by coupling with an external source landscape, but has little reciprocal influence on that landscape. There usually will be some rate of input of a locally inferior species that suffices to 'swamp' a superior species and drive it to extinction. We use simple models of apparent competition to show that when one superimposes upon this scenario temporal fluctuations, mediated through shifts in parameter values, such variation can either magnify the importance of the external input, or reduce it, depending on which component of the system experiences variation. We examine this in the case of both slow variation (for which we suggest a protocol that may be useful in a wide range of ecological models), and fast variation. The theoretical studies presented here provide examples of the rich range of outcomes that may arise due to temporal variability in spatially heterogeneous landscapes.  相似文献   

7.
A computational model based on previous physiological and psychophysical data is presented for the human Pacinian (P) psychophysical channel. The model can predict the probability of detection in simple psychophysical tasks, and hence psychometric functions and thresholds. The model simulates stimulating variable and fixed glabrous skin sites with different-sized contactors and includes spatial variation of monkey P-fiber sensitivities. Therefore, it is especially suitable for studying spatial summation, i.e. the improvement of threshold with increasing contactor area. Selective contributions of neural integration (n.i.) and probability summation (p.s.) are also incorporated into the model. Model predictions are compared to psychophysical results of Gescheider et al. (). The performance of the model regarding the effects of contactor size is very good. In addition to predicting approximately 3?dB improvement of thresholds when the contactor area is doubled, the model also reveals nonlinear contributions of p.s. and n.i. Furthermore, the model asserts that thresholds are largely governed by neural integration when small contactors are used. These and other findings discussed in the article show that the presented model is a helpful tool for formulating testable hypotheses. Although the model can also simulate some temporal summation effects, simulation results do not conform well to previous data on temporal response properties. Thus, the model needs to be refined in that respect.  相似文献   

8.
Memory for time by animals appears to undergo a systematic shortening. This so-called choose-short effect can be seen in a conditional temporal discrimination when a delay is inserted between the sample and comparison stimuli. We have proposed that this temporal shortening may result from a procedural artifact in which the delay appears similar to the intertrial interval and thus, produces an inadvertent ambiguity or 'instructional failure'. When this ambiguity is avoided by distinguishing the intertrial interval from the delay, as well as the samples from the delay, the temporal shortening effect and other asymmetries often disappear. By avoiding artifacts that can lead to a misinterpretation of results, we may understand better how animals represent time. An alternative procedure for studying temporal discriminations is with the psychophysical bisection procedure in which following conditional discrimination training, intermediate durations are presented and the point of subjective equality is determined. Research using the bisection procedure has shown that pigeons represent temporal durations not only as their absolute value but also relative to durations from which they must be discriminated. Using this procedure, we have also found that time passes subjectively slower when animals are required to respond to the to-be-timed stimulus.  相似文献   

9.
A computational model based on previous physiological and psychophysical data is presented for the human Pacinian (P) psychophysical channel. The model can predict the probability of detection in simple psychophysical tasks, and hence psychometric functions and thresholds. The model simulates stimulating variable and fixed glabrous skin sites with different-sized contactors and includes spatial variation of monkey P-fiber sensitivities. Therefore, it is especially suitable for studying spatial summation, i.e. the improvement of threshold with increasing contactor area. Selective contributions of neural integration (n.i.) and probability summation (p.s.) are also incorporated into the model. Model predictions are compared to psychophysical results of Gescheider et al. (2005). The performance of the model regarding the effects of contactor size is very good. In addition to predicting approximately 3 dB improvement of thresholds when the contactor area is doubled, the model also reveals nonlinear contributions of p.s. and n.i. Furthermore, the model asserts that thresholds are largely governed by neural integration when small contactors are used. These and other findings discussed in the article show that the presented model is a helpful tool for formulating testable hypotheses. Although the model can also simulate some temporal summation effects, simulation results do not conform well to previous data on temporal response properties. Thus, the model needs to be refined in that respect.  相似文献   

10.
Interruptions in human timing have been studied in the last few years using temporal production and discrimination tasks. Expecting a break shortened perceived duration in both paradigms but manipulating break duration affected time production only, suggesting that preparatory processes might not take place in time discrimination. In time production, using cues revealed that providing information about the break may modulate the effect of break expectancy. For example, time was perceived as shorter when a break was expected in trials with no breaks, but forewarning participants of the break absence with a cue almost abolished the effect. In the present experiment, a tone was classified as "short" or "long" in a discrimination task. Location and duration of breaks were varied and cues were provided in some trials with no breaks. Results showed an effect of break expectancy: perceived duration shortened with increasing pre-break duration. Reducing expectancy with cues in uninterrupted tones decreased the proportion of "short" responses in long-tone trials, but not in short-tone trials. As in previous discrimination experiments, perceived duration was unaffected by varying break duration. Similarities and differences in results as well as in their interpretation when breaks are used in time production and time discrimination tasks are discussed.  相似文献   

11.
Understanding the relative impact of climate change and land cover change on changes in avian distribution has implications for the future course of avian distributions and appropriate management strategies. Due to the dynamic nature of climate change, our goal was to investigate the processes that shape species distributions, rather than the current distributional patterns. To this end, we analyzed changes in the distribution of Eastern Wood Pewees (Contopus virens) and Red‐eyed Vireos (Vireo olivaceus) from 1997 to 2012 using Breeding Bird Survey data and dynamic correlated‐detection occupancy models. We estimated the local colonization and extinction rates of these species in relation to changes in climate (hours of extreme temperature) and changes in land cover (amount of nesting habitat). We fit six nested models to partition the deviance explained by spatial and temporal components of land cover and climate. We isolated the temporal components of environmental variables because this is the essence of global change. For both species, model fit was significantly improved when we modeled vital rates as a function of spatial variation in climate and land cover. Model fit improved only marginally when we added temporal variation in climate and land cover to the model. Temporal variation in climate explained more deviance than temporal variation in land cover, although both combined only explained 20% (Eastern Wood Pewee) and 6% (Red‐eyed Vireo) of temporal variation in vital rates. Our results showing a significant correlation between initial occupancy and environmental covariates are consistent with biological expectation and previous studies. The weak correlation between vital rates and temporal changes in covariates indicated that we have yet to identify the most relevant components of global change influencing the distributions of these species and, more importantly, that spatially significant covariates are not necessarily driving temporal shifts in avian distributions.  相似文献   

12.
The complex patterns of visual motion formed across the retina during self-motion, often referred to as optic flow, provide a rich source of information describing our dynamic relationship within the environment. Psychophysical studies indicate the existence of specialized detectors for component motion patterns (radial, circular, planar) that are consistent with the visual motion properties of cells in the medial superior temporal area (MST) of nonhuman primates. Here we use computational modeling and psychophysics to investigate the structural and functional role of these specialized detectors in performing a graded motion pattern (GMP) discrimination task. In the psychophysical task perceptual discrimination varied significantly with the type of motion pattern presented, suggesting perceptual correlates to the preferred motion bias reported in MST. Simulated perceptual discrimination in a population of independent MST-like neural responses showed inconsistent psychophysical performance that varied as a function of the visual motion properties within the population code. Robust psychophysical performance was achieved by fully interconnecting neural populations such that they inhibited nonpreferred units. Taken together, these results suggest that robust processing of the complex motion patterns associated with self-motion and optic flow may be mediated by an inhibitory structure of neural interactions in MST.  相似文献   

13.
Whatever criteria are used to measure evolutionary success – species numbers, geographic range, ecological abundance, ecological and life history diversity, background diversification rates, or the presence of rapidly evolving clades – the legume family is one of the most successful lineages of flowering plants. Despite this, we still know rather little about the dynamics of lineage and species diversification across the family through the Cenozoic, or about the underlying drivers of diversification. There have been few attempts to estimate net species diversification rates or underlying speciation and extinction rates for legume clades, to test whether among-lineage variation in diversification rates deviates from null expectations, or to locate species diversification rate shifts on specific branches of the legume phylogenetic tree. In this study, time-calibrated phylogenetic trees for a set of species-rich legume clades – Calliandra, Indigofereae, Lupinus, Mimosa and Robinieae – and for the legume family as a whole, are used to explore how we might approach these questions. These clades are analysed using recently developed maximum likelihood and Bayesian methods to detect species diversification rate shifts and test for among-lineage variation in speciation, extinction and net diversification rates. Possible explanations for rate shifts in terms of extrinsic factors and/or intrinsic trait evolution are discussed. In addition, several methodological issues and limitations associated with these analyses are highlighted emphasizing the potential to improve our understanding of the evolutionary dynamics of legume diversification by using much more densely sampled phylogenetic trees that integrate information across broad taxonomic, geographical and temporal levels.  相似文献   

14.
Ecological communities are typically open to the immigration and emigration of individuals, and also variable through time. In this paper we argue that interesting and potentially important effects arise when one splices together spatial fluxes and temporal variability. The particular system we examine is a sink habitat, where a species faces deterministic extinction but is rescued by recurrent immigration. We have shown, using a simple extension of the canonical exponential growth model in a time-varying environment, that variation "inflates" the average abundance of sink populations. We can analytically quantify the magnitude of this effect in several special cases (square-wave temporal variation and Gaussian stochastic variation). The inflationary effect can be large in "intermittent" sinks (where there are periods with positive growth), and when temporal variation is strongly autocorrelated. The effect appears to be robust to incorporation of demographic stochasticity (due to discrete birth-death-immigration processes), and to direct density dependence. With discrete generations, however, one can observe a wide range of effects of temporal variation, including depression as well as inflation. We argue that the inflationary effect of temporal variation in sink habitats can have important implications for community structure, because it can increase the average abundance (and hence local impacts) of species that on average are being excluded from a local community. We illustrate the latter effect using a familiar model of exploitative competition for a single limiting resource. We demonstrate that temporal variation can reverse local competitive dominance, even to the extent of allowing an inferior competitor maintained by immigration to exclude a competing species that would be locally superior in a constant environment.  相似文献   

15.
We extend a neural network model, developed to examine neural correlates for the dynamic synthesis of edges from luminance gradients (O?men, 1993), to account for the effects of exposure duration, base blur and contrast on the perceived sharpness of edges. This model of REtino-COrtical Dynamics (RECOD) predicts that (i) a decrease in exposure duration causes an increase in the perceived blur and the blur discrimination threshold for edges, (ii) this increase in perceived blur is more pronounced for sharper edges than for blurred edges, (iii) perceived blur is independent of contrast while the blur discrimination threshold decreases with contrast, (iv) perceived blur increases with increasing base blur while the blur discrimination threshold has a nonmonotonic U-shaped dependence on base blur, (v) the perceived location of an edge shifts progressively towards the low-luminance side of the edge with increasing contrast, and (vi) perceived contrast of suprathreshold stimuli is essentially independent of spatial frequency over a wide range of contrast values. These predictions are shown to be in quantitative agreement with existing psychophysical data from the literature and with data collected on three observers to quantify the effect of exposure duration on perceived blur.  相似文献   

16.
The present experiment examined the effects of several test manipulations on discrimination, accuracy and sensitivity to reinforcer frequency in a conditional discrimination. Four pigeons responded on a multiple schedule of matching to sample procedures in which the reinforcer-frequency ratio for correct comparison choice responding was varied across components within session from 1:9 to 9:1. Following stability, the effects of prefeeding, extinction, and distraction during sample and comparison presentation were assessed. Discrimination accuracy decreased under prefeeding, extinction, and distraction during sample presentation. Sensitivity to reinforcer frequency decreased under prefeeding and extinction. Decreases in sensitivity were positively related to decreases in discrimination accuracy. The decreases in discrimination accuracy and sensitivity under prefeeding and extinction are interpreted as being due to decreases in attending to the sample and comparison stimuli, respectively, possibly mediated by motivational effects of these manipulations. This interpretation is consistent with current conceptualizations of the contingencies that govern conditional-discrimination performance.  相似文献   

17.
Environmental variation is classically expected to affect negatively population growth and to increase extinction risk, and it has been identified as a major determinant of establishment failures in the field. Yet, recent theoretical investigations have shown that the structure of environmental variation and more precisely the presence of positive temporal autocorrelation might alter this prediction. This is particularly likely to affect the establishment dynamics of biological control agents in the field, as host–parasitoid interactions are expected to induce temporal autocorrelation in host abundance. In the case where parasitoid populations display overcompensatory dynamics, the presence of such positive temporal autocorrelation should increase their establishment success in a variable environment. We tested this prediction in laboratory microcosms by introducing parasitoids to hosts whose abundances were manipulated to simulate uncorrelated or positively autocorrelated variations in carrying capacity. We found that environmental variability decreased population size and increased parasitoid population variance, which is classically expected to extinction risk. However, although exposed to significant environmental variation, we found that parasitoid populations experiencing positive temporal autocorrelation in host abundance were more likely to persist than populations exposed to uncorrelated variation. These results confirm that environmental variation is a key determinant of extinction dynamics that can have counterintuitive effects depending on its autocorrelation structure.  相似文献   

18.
This paper addresses the question of frequency discrimination of hearing for non-stationary (short) tone stimuli (duration 125 ms). Shortening of the stimulus duration leads to widening of the frequency spectrum of the tone. It can be shown that for hearing no acoustical uncertainty relation holds and thus some nonlinear elements must be present in hearing physiology. We present neurophysiological and psychoacoustical findings supporting the hypothesis that frequency discrimination of non-stationary short tone stimuli is performed in neural networks of the auditory system. Neural network architectures that could process the temporal and place excitation patterns originating in the cochlea are suggested. We show how these networks (temporal coincidence network processing the temporal code and lateral inhibition network processing the place code) can be combined to show performance consistent with auditory physiology. They might explain the frequency discrimination of hearing for non-stationary short tone stimuli. We show the fitting of psychophysical relations based on these networks with the experimentally determined data.  相似文献   

19.
Temporal dynamics and nestedness of an oceanic island bird fauna   总被引:1,自引:0,他引:1  
Aim To examine temporal variation in nestedness and whether nestedness patterns predict colonization, extinction and turnover across islands and species. Location Dahlak Archipelago, Red Sea. Method The distributions of land birds on 17 islands were recorded in two periods 30 years apart. Species and islands were reordered in the Nestedness Temperature Calculator, software for assessing degrees of nestedness in communities. The occupancy probability of each cell, i.e. species–island combinations, was calculated in the nested matrix and an extinction curve (boundary line) was specified. We tested whether historical and current nested ranks of species and islands were correlated, whether there was a relationship between occupancy probability (based on the historical data) and number of extinctions or colonizations (regression analyses) and whether the boundary line could predict extinctions and colonizations (chi‐square analyses). Results Historical and current nested ranks of islands and species were correlated but changes in occupancy patterns were common, particularly among bird species with intermediate incidence. Extinction and turnover of species were higher for small than large islands, and colonization was negatively related to isolation. As expected, colonizations were more frequent above than below the boundary line. Probability of extinction was highest at intermediate occupancy probability, giving a quadratic relationship between extinction and occupancy probability. Species turnover was related to the historical nested ranks of islands. Colonization was related negatively while extinction and occupancy turnover were related quadratically to historical nested ranks of species. Main conclusions Some patterns of the temporal dynamics agreed with expectations from nested patterns. However, the accuracy of the predictions may be confounded by regional dynamics and distributions of idiosyncratic, resource‐limited species. It is therefore necessary to combine nestedness analysis with adequate knowledge of the causal factors and ecology of targeted species to gain insight into the temporal dynamics of assemblages and for nestedness analyses to be helpful in conservation planning.  相似文献   

20.
Using stochastic simulations and elasticity analysis, we show that there are inherent differences in the risk of extinction between life histories with different demographies. Which life history is the most vulnerable depends on which vital rate varies. When juvenile survival varies semelparous organisms with delayed reproduction are the most vulnerable ones, while a varying developmental rate puts a greater threat to semelparous organisms with rapid development. Iteroparous organisms are the most vulnerable ones when adult survival varies. Generally, we do not expect to observe organisms in nature having variation in vital rates that produce a high risk of extinction. Given the results here we therefore predict that iteroparous organisms should show low variation in adult survival. Moreover, we predict that semelparous organisms should show low variation in juvenile survival and low variation in developmental rate. The effect of temporal correlation on extinction risk is most pronounced in organisms with semelparous life histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号