首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
New strains of the hydrocarbon rich alga Botryococcus braunii Kützing were isolated from water samples collected in three tropical freshwater lakes. These strains synthesize lycopadiene, a tetraterpenoid metabolite, as their sole hydrocarbon. The morphological and ultrastructural characteristics of these algae are similar to those reported for previously described strains which produce either alkadienes or botryococcenes. The pyriform shaped cells are embedded in a colonial matrix formed by layers of closely appressed external walls: this dense matrix is impregnated by the hydrocarbon and some other lipids. We believe the new strains synthesizing lycopadiene form a third chemical race in B. braunii, besides the alkadiene and botryococcene races, rather than a different species. Like the other two types of hydrocarbons, lycopadiene was produced primarily during the exponential and linear growth phases. The major fatty acid in the three races was oleic acid. This fatty acid was predominant in the alkadiene race; palmitic and octacosenoic acid also were present in appreciable amounts in the three races. Cholest-5-en-3β-ol, 24-methylcholest-5-en-3β-ol and 24-ethylcho-lest-5-en-3β-ol occurred in the three races; three unidentified sterols also were detected in the lycopadiene race. Moreover, the presence of very long chain alkenyl-phenols in the lipids of algae of the alkadiene race was not observed in the botryococcene and lycopadiene races. Of the polysaccharides released in the medium, galactose appeared as a primary component: it predominated in the botryococcene race. The other major constituents were fucose for the alkadiene race and glucose and fucose for the lycopadiene race. Although morphologically similar, some important chemical differences exist among algae classified as B. braunii.  相似文献   

2.
The green microalga Botryococcus braunii (B. braunii), race B, was cultured under light-emitting diode (LED) irradiation with and without violet light. This study examined the effect of violet light on hydrocarbon recovery and production in B. braunii. C34 botryococcene hydrocarbons were efficiently extracted by thermal pretreatments at lower temperatures when the alga was cultured without violet light. The hydrocarbon content was also higher (approximately 3%) in samples cultured without violet light. To elucidate the mechanism of effective hydrocarbon recovery and production, we examined structural components of the extracellular matrix (ECM). The amounts of extracellular carotenoids and water-soluble polymers extracted by thermal pretreatment from the ECM were decreased when the alga was cultured without violet light. These results indicate that LED irradiation without violet light is more effective for hydrocarbon recovery and production in B. braunii. Furthermore, structural ECM components are closely involved in hydrocarbon recovery and production in B. braunii.  相似文献   

3.
We tested for chemical reagents that would be useful in preparing a large number of vital single cells from colonial Botryococcus braunii B-race, variety Showa. Among the 18 reagents assayed, glycerol and erythritol showed the highest potency for releasing single cells. Incubation in medium containing these reagents released 40–50 % single cells in 15 min. Fluorescent staining with Nile red revealed that except for the cap-like structures the released single cells were free of hydrocarbon oils that accumulated in the extracellular matrix where the single cells were embedded. However, to maintain the prepared single cells in vital condition, they must be maintained at a high concentration (>2?×?107 cells/ml); at low concentrations, they rapidly lost chlorophyll and get disrupted. In contrast to the above results obtained using B-race, Showa, single cells prepared from A-race varieties survived even at low cell concentrations.  相似文献   

4.
Botryococcus braunii (N-836) produced 60 – 73% hydrocarbons on dry weight basis, of which C34 botryococcene was found to be the major hydrocarbon, constituting about 50 – 76 % of total content throughout the experimental studies. Major fatty acids present in this organism were C18:1 and C16:0. Saturated hydrocarbons like docosane, hexacosane and heptacosane were also found to be produced by the organism. Methyl branched fatty acids, were identified as 16-methyl heptadecanoic and 5, 9, 13 - trimethyl tetradecanoic acids by GC-MS. Maximum hydrocarbon accumulation was observed during third week of its growth.  相似文献   

5.
The lipid profile of seven species of unicellular eukaryotic microalgae grown under controlled conditions was studied with emphasis on the hydrocarbons and the fatty acids as part of a search for oil-producing algae. Green, slow-growing colonies of Botryococcus braunii Kutz contained the highest lipid content of 45% based on the organic weight, with an increase to 55% under nitrogen deficiency and with no effect of sodium chloride stress. Ankistrodesmus sp. Thomas, Dunaliella spp., Isochrysis sp., Nannochloris sp. Thomas, and Nitzschia sp. Chapman contained an average of 25% lipids under nitrogen sufficient conditions. Nitrogen deficiency resulted in significant increase in the lipid content in all species but Dunaliella spp., which produced a higher content of carbohydrates. Significant low amounts of acyclic hydrocarbons were detected only in Botryococcus braunii Kutz and not in the other algae. The major hydrocarbon fractions in nitrogen deficient Botryococcus braunii Kutz, Dunaliella salina Thomas, Isochrysis spp. and Nannochloris sp. Thomas were cyclic and branched polyunsaturated components which were identified as various isoprenoid derivatives. The polar lipid composition of glycolipids and phospholipids of all species investigated was fairly typical of photosynthetic eukaryotic algae. Fatty acid composition was species specific, with changes occurring in the relative amounts of individual acids of cells cultivated under different conditions and growth phases. All species synthesized C14:0, C16.0, C18:1, C18:2 and C18:3 fatty acids; C 16:4 in Ankistrodesmus sp. Thomas; C18:4 and C 22.6 in Isochrysis sp.; C16:2, C16:3 and C20:5 in Nannochloris sp. Thomas; C16:2, C16:3 and C20:5 in Nitzschia sp. Chapman. Nitrogen deficiency and salt stress induced accumulation of C18:1 in all treated species and to a lesser extent in Botryococcus braunii Kutz. The low production of hydrocarbons under optimal growth conditions and the high production of hydrocarbons under limited growth conditions cannot support the notion that microalgae can be utilized as biosolar energy converters for the production of liquid fuel, but point to the availability of a variety of neutral and polar lipid products.  相似文献   

6.
Squalene is a linear intermediate to nearly all classes of triterpenes and sterols and is itself highly valued for its use in wide range of industrial applications. Another unique linear triterpene is botryococcene and its methylated derivatives generated by the alga Botryococcus braunii race B, which are progenitors to fossil fuel deposits. Production of these linear triterpenes was previously engineered into transgenic tobacco by introducing the key steps of triterpene metabolism into the particular subcellular compartments. In this study, the agronomic characteristics (height, biomass accumulation, leaf area), the photosynthetic capacity (photosynthesis rate, conductance, internal CO2 levels) and triterpene content of select lines grown under field conditions were evaluated for three consecutive growing seasons. We observed that transgenic lines targeting enzymes to the chloroplasts accumulated 50–150 times more squalene than the lines targeting the enzymes to the cytoplasm, without compromising growth or photosynthesis. We also found that the transgenic lines directing botryococcene metabolism to the chloroplast accumulated 10‐ to 33‐fold greater levels than the lines where the same enzymes were targeted to in the cytoplasm. However, growth of these high botryococcene accumulators was highly compromised, yet their photosynthesis rates remained unaffected. In addition, in the transgenic lines targeting a triterpene methyltransferase (TMT) to the chloroplasts of high squalene accumulators, 55%–65% of total squalene was methylated, whereas in the lines expressing a TMT in the cytoplasm, only 6%–13% of squalene was methylated. The growth of these methylated triterpene‐accumulating lines was more compromised than that of nonmethylated squalene lines.  相似文献   

7.
Samples of the green colonial alga Botryococcus braunii, collected from various localities, were grown in the laboratory and examined for their hydrocarbon content and morphology. Although few differences appeared between the ultrastructures of the samples, the nature of their hydrocarbons, which remains unchanged at any stage of growth, allows the distinction of two physiological races viz algae producing odd-numbered unbranched alkadienes and trienes (C25C31) (the A race) and those producing polymethylated triterpenes CnH2n-10 (C30C37), the botryococcenes (the B race). In laboratory culture, the hydrocarbon content of these new strains is very high, from 30 to 60% of the dry biomass. For the two races the greatest hydrocarbon productivity takes place during the active growth phase. The important variability observed in botryococcene distribution could originate both from genetic and environmental factors.  相似文献   

8.
Summary Direct entrapment of the hydrocarbonrich algaBotryococcus braunii was examined using eleven polyurethane prepolymers. A high toxicity was observed in several foams. With five of the tested prepolymers, nevertheless, a large part of the algal population can survive entrapment and substantial photosynthetic capacity, ca. 40–60% relative to free controls, was retained one day after immobilization. However, prolonged batches under standard conditions revealed a long-term toxicity; as a result the photosynthetic capacity and hydrocarbon production of the entrapped cultures were strongly reduced relative to free controls. Immobilization ofB. braunii was also achieved, with a loading yield of ca. 70%, via adsorption on FHP 4000 and FHP 5000 foams. Subsequent batch cultures under shaken and airlift conditions revealed a substantial release, ca. 30% of free cells, at the end of the cultures. However, the release from these adsorbed cultures was no higher than from directly entrappedB. braunii. Furthermore, no toxic effects were noted in the adsorbed cultures; the showed active growth, high photosynthetic capacity and produced quite large amounts of hydrocarbons, the chemical structure and the relative abundance of which were not altered by immobilization. Taking into account cell leakage, it appears that adsorbed cultures exhibit a similar, and sometimes even higher metabolic activity than free controls; thus, under air-lift conditions, high biomass and hydrocarbon productivities can be achieved.  相似文献   

9.
ABSTRACT:?

Botryococcus braunii, a green colonial microalga, is an unusually rich renewable source of hydrocarbons and other chemicals. Hydrocarbons can constitute up to 75% of the dry mass of B. braunii. This review details the various facets of biotechnology of B. braunii, including its microbiology and physiology; production of hydrocarbons and other compounds by the alga; methods of culture; downstream recovery and processing of algal hydrocarbons; and cloning of the algal genes into other microorganisms. B. braunii converts simple inorganic compounds and sunlight to potential hydrocarbon fuels and feedstocks for the chemical industry. Microorganisms such as B. braunii can, in the long run, reduce our dependence on fossil fuels and because of this B. braunii continues to attract much attention.  相似文献   

10.
To improve biomass and microalgal oil production of Botryococcus braunii, fed‐batch culture was investigated in an airlift photobioreactor. The optimal feeding time of the fed‐batch culture was after 15 days of cultivation, where 1.82 g/L of the microalgal biomass was obtained in the batch culture. Nitrate nutrient was the restrictive factor for the fed‐batch cultivation while phosphate nutrient with high concentration did not affect the microalgal growth. The optimal mole ratio of nitrate to phosphate was 34.7:1, where nitrate concentration reached the initial level and phosphate concentration was one quarter of its initial level. With one feeding, the biomass of B. braunii reached 2.56 g/L after 18 days. Two feedings in 2‐day interval enhanced the biomass production up to 2.87 g/L after 19 days of cultivation. The hydrocarbon content in dry biomass of B. braunii kept at high level of 64.3% w/w. Compared with the batch culture, biomass production and hydrocarbon productivity of B. braunii were greatly improved by the strategic fed‐batch cultivation.  相似文献   

11.
Batch cultures of the hydrocarbon-rich alga Botryococcus braunii, Kütz. (axenic strains, non-axenic strains, associations with selected microorganisms) were examined with regard to total biomass and hydrocarbons at the onset of the stationary phase. Pronounced variations, related to the origin of the strains and to growth conditions, were observed with axenic cultures. It also appeared that the presence of microorganisms is not essential for high hydrocarbon production. Nevertheless, numerous bacteria were shown to exert considerable influence, antagonistic or beneficial, on B. braunii growth yield and hydrocarbon production. Such effects were strongly dependent on the species involved and on culture conditions. The presence of various microorganisms can influence not only the quantity of hydrocarbons produced, but also their level in the algal biomass and their relative abundance. However, their chemical structure is not affected. Intricate relationships were observed in B. braunii-bacteria systems and numerous factors (including, in some cultures, large positive effects due to bacterially produced CO2) were implicated. Accordingly, specific associations should provide appropriate conditions for renewable hydrocarbon production via B. braunii large scale cultures.  相似文献   

12.
The phylogenetic placement of four isolates of Botryococcus braunii Kützing and of Botryococcus sudeticus Lemmermann isolate UTEX 2629 was investigated using sequences of the nuclear small subunit (18S) rRNA gene. The B. braunii isolates represent the A (two isolates), B, and L chemical races. One isolate of B. braunii (CCAP 807/1; A race) has a group I intron at Escherichia coli position 1046 and isolate UTEX 2629 has group I introns at E. coli positions 516 and 1512. The rRNA sequences were aligned with 53 previously reported rRNA sequences from members of the Chlorophyta, including one reported for B. braunii (Berkeley strain). Phylogenetic trees were constructed using distance, weighted maximum parsimony, and maximum likelihood, and their reliability was estimated using bootstrap analysis for distance and parsimony and Bayesian inference for likelihood. All methods showed, with high bootstrap or credibility support, that the four isolates of B. braunii form a monophyletic group whose closest relatives are in the genus Choricystis in the Trebouxiophyceae, whereas the previously reported B. braunii sequence is from a member of the Chlamydomonadales in the Chlorophyceae and isolate UTEX 2629 is a member of the Sphaeropleales in the Chlorophyceae. Polyphyly of these sequences was confirmed by Kishino‐Hasegawa tests on artificial trees in which sequences were moved to a single lineage.  相似文献   

13.
The structure of liquid hydrocarbons and fatty acids produced by the green alga Botryococcus was identified. Two representatives of this alga, Botryococcus braunii Kütz, strain IPPAS H-252, introduced into culture earlier and an organism isolated for the first time from the Shira Lake, were used for this identification. Fatty acid composition of B. braunii, strain H-252, lipids was characterized by a high content of trienoic acids of C16–C18 series. The hydrocarbon composition of this strain was represented by straight-chain and branched-chain C14–C28 components; long-chain linear aliphatic C20–C27 hydrocarbons (54.4%) and 2,6,10,14-tetramethylhexadecane (20.5%) predominated among them. The strain H-252 differed in its fatty acid and hydrocarbon composition from the strains described earlier as Botryococcus braunii. The fatty acid composition of the Botryococcus isolate was represented mainly by C12–C32 saturated and monoenoic acids. The hydrocarbons formed by this isolate were represented by dienoic and trienoic components. C29 (48.9–56.3%) and C31 (11.1–16.3%) hydrocarbons predominated among the C23–C31 dienoic hydrocarbons, and C27, C29, and C31 trienoic hydrocarbons comprised 2.5–2.6% of total hydrocarbons. This type of hydrocarbons and the lipid fatty acid composition were characteristic for the race A of B. braunii.  相似文献   

14.
As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured in media derived from the modified Chu13 medium by supplying artificial seawater, natural seawater, or NaCl. After a certain period of culture in the media with an osmotic pressure corresponding to 1/4-seawater, hydrocarbon recovery rates exceeding 90% were obtained by simply mixing intact wet algae with n-hexane without any pretreatments and the results using the present culture conditions indicate the potential for hydrocarbon milking.

Highlights

Seawater was used for efficient hydrocarbon extraction from Botryococcus braunii. The alga was cultured in media prepared with seawater or NaCl. Hydrocarbon recovery rate exceeding 90% was obtained without any pretreatment.  相似文献   

15.
Triterpenes are thirty‐carbon compounds derived from the universal five‐carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large‐scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (>1 mg/g FW in T0 mature plants) were obtained using the cytosolic‐targeting strategy. Plastid‐targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid‐targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots.  相似文献   

16.
The colonial microalga Botryococcus braunii accumulates large quantities of hydrocarbons mainly in the extracellular space; most other oleaginous microalgae store lipids in the cytoplasm. Botryococcus braunii is classified into three principal races (A, B, and L) based on the types of hydrocarbons. Race B has attracted the most attention as an alternative to petroleum by its higher hydrocarbon contents than the other races and its hydrocarbon components, botryococcenes and methylsqualenes, both can be readily converted into biofuels. We studied race B using fluorescence and electron microscopy, and clarify the stage when extracellular hydrocarbon accumulation occurs during the cell cycle, in a correlation with the behavior and structural changes of the lipid bodies and discussed development of the algal colony. New accumulation of lipids on the cell surface occurred after cell division in the basolateral region of daughter cells. While lipid bodies were observed throughout the cell cycle, their size and inclusions were dynamically changing. When cells began dividing, the lipid bodies increased in size and inclusions until the extracellular accumulation of lipids started. Most of the lipids disappeared from the cytoplasm concomitant with the extracellular accumulation, and then reformed. We therefore hypothesize that lipid bodies produced during the growth of B. braunii are related to lipid secretion. New lipids secreted at the cell surface formed layers of oil droplets, to a maximum depth of six layers, and fused to form flattened, continuous sheets. The sheets that combined a pair of daughter cells remained during successive cellular divisions and the colony increased in size with increasing number of cells.  相似文献   

17.
Raman spectrometry and electron microscopy show that, in the hydrocarbon-rich alga Botryococcus braunii, hydrocarbons accumulate in two distinct sites; internally in cytoplasmic inclusions and externally in successive outer walls and derived globules. No other classes of lipid are present in noticeable amounts in the cytoplasmic inclusions and in the external globules. The same hydrocarbons are observed in the internal and external pools but with different relative abundances, the shorter hydrocarbons being more abundant in the internal pool. The bulk of B. braunii hydrocarbons (ca 95%) is located in the external pool. Such an extracellular location allows this species to exhibit both an unusually high hydrocarbon content (15% of dry wt) and a normal level (0.75%) within the cells. The hydrocarbon pattern and location of B. braunii were compared with that of other organisms; a close relation appears between higher plant epidermal cells and this green alga. The trilaminar outer walls of B. braunii, at whose contact external hydrocarbon globules accumulate, contain a sporopollenin-like compound.  相似文献   

18.
Botryococcus braunii (Chlorophyta, Botryococcaceae) is a colony-forming green microalga that produces large amounts of liquid hydrocarbons, which can be converted into transportation fuels. There are three different races of B. braunii, A, B, and L, that are distinguished based on the type of hydrocarbon each produces. Each race also has many strains that are distinguished by the location from which they were collected. While B. braunii has been well studied for the chemistry of the hydrocarbon production, very little is known about the molecular biology of B. braunii. To begin to address this problem, we determined the genome size of the A race, Yamanaka strain, and the L race, Songkla Nakarin strain, of B. braunii. Flow cytometry analysis indicates that the A race of B. braunii has a genome size of 166.0 ± 0.4 Mb, while the L race has a substantially larger genome size at 211.3 ± 1.7 Mb. We also used phylogenetic analysis with the nuclear small subunit (18S) rRNA gene to classify strains of the A and B races that have not yet been compared evolutionarily to previously published B. braunii phylogenetics. The analysis suggests that the evolutionary relationship between B. braunii races is correlated with the type of liquid hydrocarbon they produce.  相似文献   

19.
Lipid composition and hydrocarbon structure of two colonial green algae of the genus Botryococcus, i.e., a museum strain and a field sample collected for the first time from Lake Shira (Khakasia, Siberia), have been compared. Polar lipids, diacylglycerols, alcohols, triacylglycerols, sterols, sterol esters, free fatty acids and hydrocarbons have been identified among lipids in the laboratory culture. The dominant fraction in the museum strain was formed by polar lipids (up to 50% of the lipids) made up of fatty acids from C12 to C24. Palmitic, oleic, C16 - C18 dienoic and trienoic acids were the main fatty acids of the museum strain. Aliphatic hydrocarbons were found in the lipid of the museum strain. However, these amounted maximally to about 1% of the dry biomass at the end of exponential growth phase. The qualitative and quantitative compositions of FAs and hydrocarbons of the museum strain of Botryococcus, (registered at the Cambridge collection as Botryococcus braunii Kutz No LB 807/1 Droop 1950 H-252) differed from those of the Botryococcus strain described in the literature as Botryococcus braunii. The Botryococcus sp. found in Lake Shira is characterized by a higher lipid content (<40% of the dry weight). Polar lipids, sterols, triacylglycerols, free fatty acids and hydrocarbons have been identified among lipids in the field sample. The main lipids in this sample were dienes and trienes (hydrocarbons <60% of total lipid). Monounsaturated and very long chain monounsaturated fatty acids, including C28:1 and C32:1 acids, were identified in the Botryococcus found in Lake Shira. The chemo-taxonomic criteria allow us to unequivocally characterize the organism collected from Lake Shira as Botryococcus braunii, race A.  相似文献   

20.
Xu L  Guo C  Wang F  Zheng S  Liu CZ 《Bioresource technology》2011,102(21):10047-10051
A simple and rapid harvesting method by in situ magnetic separation with naked Fe3O4 nanoparticles has been developed for the microalgal recovery of Botryococcus braunii and Chlorella ellipsoidea. After adding the magnetic particles to the microalgal culture broth, the microalgal cells were adsorbed and then separated by an external magnetic field. The maximal recovery efficiency reached more than 98% for both microalgae at a stirring speed of 120 r/min within 1 min, and the maximal adsorption capacity of these Fe3O4 nanoparticles reached 55.9 mg-dry biomass/mg-particles for B. braunii and 5.83 mg-dry biomass/mg-particles for C. ellipsoidea. Appropriate pH value and high nanoparticle dose were favorable to the microalgae recovery, and the adsorption mechanism between the naked Fe3O4 nanoparticles and the microalgal cells was mainly due to the electrostatic attraction. The developed in situ magnetic separation technology provides a great potential for saving time and energy associated with improving microalgal harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号