首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of taurocholate on very low density lipoprotein (VLDL) triacylglycerol synthesis and secretion was studied by isolated rat liver-parenchymal cells. The incorporation of [3H]glycerol into cell-associated and VLDL triacylglycerols were measured after incubation in medium containing 0.75 mM oleate. Taurocholate caused a maked decrease in VLDL [3H]triacylglycerol secretion from the hepatocytes: 50-150 microM taurocholate inhibited secretion of VLDL [3H]triacylglycerols by 70-90%. Similar results were obtained when the mass of secreted VLDL triacylglycerols was measured. Taurocholate caused a decreased secretion of VLDL [3H]triacylglycerols after 15-30 min incubation. A higher amount of cellular triacylglycerols was found in taurocholate-supplemented cells. Furthermore taurocholate did not change the intracellular lipolysis of triacylglycerols. These results suggest that bile acids interfere more probably with the assembly and/or secretion of VLDL-particles and not with earlier stages of VLDL formation, e.g. triacylglycerol synthesis.  相似文献   

2.
The effect of adrenaline on triacylglycerol synthesis and secretion was examined in isolated rat hepatocytes. Cells were incubated with 0.5 mM-[1-14C]oleate, and the accumulation of triacylglycerol and [14C]triacylglycerol was measured in the incubation medium. Triacylglycerol appearing in the medium was present in a form with properties similar to very-low-density lipoproteins. Triacylglycerol, [14C]triacylglycerol and [14C]phospholipid contents of hepatocytes were also determined. Addition of 10 microM-(-)adrenaline decreased accumulation of glycerolipid in the incubation medium and also decreased cellular [14C]phospholipid content. Prazosin abolished these effects, whereas propranolol did not. The hormone did not affect cellular triacylglycerol content or rates of incorporation of [1-14C]oleate into cell triacylglycerol. The effect of adrenaline on the removal of newly secreted triacylglycerol and the secretion of synthesized glycerolipid was also examined. The catecholamine did not affect rates of removal of newly secreted triacylglycerol. Adrenaline did inhibit the secretion of pre-synthesized lipid by the cells, as assessed by the appearance of radiolabelled triacylglycerol from hepatocytes that had been preincubated with [1,2,3-3H]-glycerol. Adrenaline did not affect rates of fatty acid uptake by hepatocytes, but did stimulate oxidation of [1-14C]oleate, principally to 14CO2.  相似文献   

3.
The role of phospholipids in the assembly and secretion of very low density lipoproteins (VLDL) has been investigated by incubation of monolayer cultures of rat hepatocytes with monomethylethanolamine, an analogue of ethanolamine and choline. The cellular concentration of phosphatidylmonomethylethanolamine was increased 17-fold in response to treatment of hepatocytes with monomethylethanolamine. The secretion of phosphatidylcholine, triacylglycerol, and the apolipoproteins BH, BL, and E into VLDL was inhibited by approximately 50% in hepatocytes incubated with monomethylethanolamine, compared to untreated cells. Cell viability was unaffected by treatment with the ethanolamine analogue, as was cellular protein synthesis. The mechanism by which monomethylethanolamine reduced VLDL secretion was examined. Since monomethylethanolamine is a structural analogue of ethanolamine and choline, an obvious hypothesis for explanation of the effect on VLDL secretion was that phosphatidylcholine biosynthesis, which is required for VLDL secretion (Z. Yao and D. E. Vance. 1988. J. Biol. Chem. 263: 2998-3004) was inhibited. However, the biosynthesis of phosphatidylcholine from [3H]choline or from [3H]glycerol was not significantly reduced in the analogue-treated, compared with the untreated, hepatocytes. Nor was the incorporation of [3H]glycerol into cellular triacylglycerol altered in the monomethylethanolamine-treated cells. Furthermore, addition of monomethylethanolamine to hepatocytes did not reduce the rate of biosynthesis of phosphatidylethanolamine either from CDP-ethanolamine or from phosphatidylserine, nor was phosphatidylserine biosynthesis from [3-3H]serine affected. The 50% inhibition of VLDL secretion elicited by monomethylethanolamine was apparently specific for VLDL because there was no difference in secretion of HDL (lipid or apoprotein moieties) or albumin by cells incubated with or without the ethanolamine analogue. The experiments showed that inhibition of VLDL secretion by monomethylethanolamine was not the result of decreased biosynthesis of phospholipids, triacylglycerols, or cholesteryl esters. More subtle effects of the ethanolamine/choline analogue, for example interference by the increased amount of phosphatidylmonomethylethanolamine, in the process of assembly of lipids with apoB remain a possibility.  相似文献   

4.
Secretion of alpha-tocopherol from cultured rat hepatocytes   总被引:1,自引:0,他引:1  
Primary cultures of rat hepatocytes and rat liver perfusions were used to study hepatic secretion of alpha-tocopherol. The secretion of alpha-tocopherol from hepatocytes in culture was linear with time for 4 h. Ultracentrifugation of the medium revealed that 89.4 +/- 2.1% of alpha-tocopherol secreted during 4 h incubation was associated with the very-low density lipoprotein fraction (VLDL, d less than 1.006 g/ml). Oleic acid had no significant effect on the secretory rate of alpha-tocopherol, whereas eicosapentaenoic acid reduced the amount of alpha-tocopherol secreted to 48.4 +/- 12.7% of the control value after 20 h incubation (P less than 0.01). Monensin, a known inhibitor of VLDL secretion, reduced the secretion of alpha-tocopherol to 14.1 +/- 4.3% of the control value (P less than 0.02). Colchicine and chloroquine inhibited the secretion of alpha-tocopherol in the same order of magnitude as monensin. Hepatic perfusion after intravenous injection of in vivo labeled alpha-[3H]tocopherol lymph, showed that about 75% of the secreted radioactivity was in the VLDL fraction. From these results we conclude that most alpha-tocopherol is secreted from the liver associated with nascent VLDL in rats.  相似文献   

5.
Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin.  相似文献   

6.
Cytosolic triacylglycerol labelled from [3H]oleate accounted for almost 50% (57 +/- 22 nmol/mg of protein) of the total cellular triacylglycerol which was newly synthesized by cultured hepatocytes during a 24 h incubation. Insulin decreased the export of triacylglycerol as very-low-density lipoprotein (VLDL) during this period. This resulted in a sequestration of newly synthesized triacylglycerol in the cytosol, rather than in the particulate fraction of the cell. Longer periods of incubation with [3H]oleate resulted in increased concentrations of newly synthesized triacylglycerol within the cell, most of which (78 +/- 3% after 48 h; 80 +/- 3% after 72 h) was located within the cytosolic fraction. The quantity of newly synthesized triacylglycerol in the cell cytosol was further increased by insulin. During these periods there were decreases in the amounts of triacylglycerol associated with the particulate fraction of the cell, irrespective of the presence or absence of insulin. In no case was a decrease in VLDL triacylglycerol secretion in response to insulin accompanied by an increased triacylglycerol content in the particulate fraction of the cell. In some experiments, the fate of the cytosolic triacylglycerol was studied by pulse labelling with [3H]oleate. In these cases, when insulin was removed from the medium of cells to which they had previously been exposed, more newly synthesized triacylglycerol was secreted compared with cells which had not been exposed to insulin. This extra triacylglycerol was mobilized from the cytosolic rather than from the particulate fraction of the cell. Subsequent addition of insulin to the medium prevented the mobilization of cytosolic triacylglycerol. These results suggest that insulin enhances the storage of hepatocellular triacylglycerol in a cytosolic pool. Deficiency of insulin in the medium stimulates the mobilization of this pool which is channelled into the secretory pathway, entering the extracellular medium as VLDL.  相似文献   

7.
Isolated rat hepatocytes in suspension secrete very low density lipoproteins (VLDL) at a rate comparable with that of the perfused liver. The apoproteins of these lipoproteins are mainly of the B and E type. The amount of apoprotein C in VLDL secreted by hepatocytes is much less than that present in VLDL obtained from rat serum. Incubation of hepatocytes in the presence of fatty acids stimulates the intracellular synthesis of triacylglycerols and their secretion in VLDL. This stimulation is a linear function of the palmitic acid concentration up to 1.6 mm, the highest concentration tested. Colchicine (50 μm) reduced VLDL secretion by 90%. The stimulation of triacylglycerol synthesis and VLDL secretion upon incubation of hepatocytes with fatty acids is paralleled by an enhanced activity of microsomal diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the only enzyme exclusively involved in the synthesis of triacylglycerols. A mixture of oleic (0.2 mm) and palmitic (0.2 mm) acid added to the cell medium stimulates the activity of DGAT by 354%. This increase in enzyme activity persisted during cell homogenization and subsequent preparation of microsomes to assay the enzyme. It is concluded that freshly isolated hepatocytes in suspension represent a good system to study triacylglycerol synthesis and VLDL secretion, and that the stimulatory effects of fatty acids on these processes are, at least partially, mediated by enhanced activities of DGAT.  相似文献   

8.
Hepatocytes obtained from rats fed a choline-deficient diet for 3 days were cultured in a medium +/- choline (100 microM) or methionine (200 microM). We investigated how choline deficiency affected hepatic lipogenesis, apolipoprotein synthesis, and lipoprotein secretion. The mass of triacylglycerol and phosphatidylcholine secreted was increased about 3-fold and 2-fold, respectively, by the addition of either choline or methionine to the cultured cells. Similarly, a 3-fold stimulation in the secretion of [3H]triacylglycerol and [3H]phosphatidylcholine derived from [3H]oleate was observed after the addition of choline or methionine. Fractionation of secreted lipoproteins by ultracentrifugation revealed that the reduced secretion of triacylglycerol and phosphatidylcholine from choline-deficient cells was mainly due to impaired secretion of very low density lipoproteins (VLDL) (but not high density lipoproteins (HDL)). Fluorography of L-[4,5-3H]leucine-labeled lipoproteins showed a remarkable inhibition of VLDL secretion by choline deficiency. The addition of choline or methionine stimulated the synthesis of phosphatidylcholine and increased the cellular phosphatidylcholine levels to that in normal cells. While there was little effect of choline on the synthesis and amount of cellular phosphatidylethanolamine, the addition of methionine diminished cellular phosphatidylethanolamine levels. Choline deficiency did not change the rate of incorporation of L-[4,5-3H]leucine into cellular VLDL apolipoproteins, nor the rate of disappearance of radioactivity from L-[4,5-3H]leucine-labeled cellular apoB, apoE, and apoC. These results suggest that hepatic secretion of VLDL, but not HDL, requires active phosphatidylcholine biosynthesis. Secondly, the inhibitory effect of choline deficiency on VLDL secretion can be compensated by the methylation of phosphatidylethanolamine.  相似文献   

9.
The effects of dexamethasone (a synthetic glucocorticoid) and insulin on the secretion of very-low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) were investigated. Rat hepatocytes in monolayer culture were preincubated for 15 h in the presence or absence of combinations of 100 nM-dexamethasone and 2 nM-, 10 nM- or 50 nM-insulin. Dexamethasone increased [3H]oleate incorporation into secreted triacylglycerol by 2.7-fold and the mass of triacylglycerol secreted by 1.5-fold. Insulin alone decreased these parameters and antagonized the effect of dexamethasone. Dexamethasone increased the secretion of [3H]leucine in apolipoprotein (apo) E, and in the large (BH) and small (BI) forms of apo B in VLDL by about 7.1-, 3.6- and 4.0-fold respectively. Insulin alone decreased the secretion of these 3H-labelled apolipoproteins in VLDL. However, 2 nM-insulin with dexamethasone increased the secretion of 3H-labelled apo BH and apo BL by a further 0.8- and 3.2-fold respectively; 50 nM-insulin decreased the secretions of apo E, apo BH and apo BL in VLDL. Similar effects for dexamethasone or insulin alone were also obtained for the masses of apo E and apo BL + H secreted in VLDL. Albumin secretion was not significantly altered by either dexamethasone or insulin alone, but in combination they stimulated by 2.1-2.6-fold. Insulin or dexamethasone alone had little effect on the secretion of apolipoproteins in the HDL fraction. However, dexamethasone plus 2 nM-insulin increased the incorporation of [3H]leucine into apo AI, apo AH plus apo C, apo AIV and apo E of HDL by about 1.8-, 1.6-, 1.7- and 2.0-fold respectively. The apo E in the bottom fraction represented about 69% of the total 3H-labelled apo E secreted. The responses in the total secretion of apo E from the hepatocytes resembled those seen in HDL. The interactions of insulin and dexamethasone are discussed in relation to the general regulation of lipoprotein metabolism, the development of hyperlipidaemias and the predisposition to premature atherosclerosis.  相似文献   

10.
To study potential effects of hepatic cholesterol concentration on secretion of very-low-density lipoprotein (VLDL) by the liver, male rats were fed on unsupplemented chow, chow with lovastatin (0.1%), or chow with lovastatin (0.1%) and cholesterol (0.1%) for 1 week. Livers were isolated from these animals and perfused in vitro, with a medium containing [2-14C]acetate, bovine serum albumin and glucose in Krebs-Henseleit buffer, and with an oleate-albumin complex. With lovastatin feeding, the hepatic concentrations of cholesteryl esters and triacylglycerols before perfusion were decreased, although free cholesterol was unchanged. However, hepatic secretion of all the VLDL lipids was decreased dramatically by treatment with lovastatin. Although total secretion of VLDL triacylglycerol, phospholipid, cholesterol and cholesteryl esters was decreased, the decrease in triacylglycerol was greater than that in free cholesterol or cholesteryl esters, resulting in secretion of a VLDL particle enriched in sterols relative to triacylglycerol. In separate studies, the uptake of VLDL by livers from control animals or animals treated with lovastatin was measured. Uptake of VLDL was estimated by disappearance of VLDL labelled with [1-14C]oleate in the triacylglycerol moiety, and was observed to be similar in both groups. During perfusion, triacylglycerol accumulated to a greater extent in livers from lovastatin-fed rats than in control animals. The depressed output of VLDL triacylglycerols and the increase in triacylglycerol in the livers from lovastatin-treated animals was indicative of a limitation in the rate of VLDL secretion. Addition of cholesterol (either free cholesterol or human low-density lipoprotein) to the medium perfusing livers from lovastatin-fed rats, or addition of cholesterol to the diet of lovastatin-fed rats, increased the hepatic concentration of cholesteryl esters and the output of VLDL lipids. The concentration of cholesteryl esters in the liver was correlated with the secretion of VLDL by the liver. These data suggest that cholesterol is an obligate component of the VLDL required for its secretion. It is additionally suggested that cholesteryl esters are in rapid equilibrium with a small pool of free cholesterol which comprises a putative metabolic pool available and necessary for the formation and secretion of the VLDL. Furthermore, the specific radioactivity (d.p.m./mumol) of the secreted VLDL free cholesterol was much greater than that of hepatic free cholesterol, suggesting that the putative hepatic metabolic pool is only a minor fraction of total hepatic free cholesterol.  相似文献   

11.
The human intestinal cell line, CaCo-2, was used to study the effect of the n-3 fatty acid, eicosapentaenoic acid, on triacylglycerol secretion. In cells incubated with 250 microM eicosapentaenoic acid, the incorporation of [3H]glycerol into triacylglycerols secreted into the medium was decreased by 58% compared to cells incubated with 250 microM oleic acid. The incorporation of [3H]glycerol into cellular triacylglycerols was decreased 32% in cells incubated with eicosapentaenoic acid. In cells preincubated with [3H]glycerol to label existing triacylglycerols, the rates of secretion of preformed triacylglycerols were similar in response to the addition of either fatty acid. Initial uptake rates of the n-3 fatty acid were higher than for oleic acid. Both eicosapentaenoic acid and oleic acid were minimally oxidized to CO2. Oleic acid was predominantly incorporated into cellular triacylglycerols (62% vs. 47%), whereas more eicosapentaenoic acid was incorporated into cellular phospholipids (46% vs. 30%). Phospholipids of microsomes prepared from cells incubated with eicosapentaenoic acid were enriched in this fatty acid. The rate of synthesis of triacylglycerol and diacylglycerol acyltransferase activities were significantly less in microsomes prepared from cells incubated with eicosapentaenoic acid. Triacylglycerol mass secreted by CaCo-2 cells incubated with either fatty acid was similar. In CaCo-2 cells, eicosapentaenoic acid decreases the synthesis and secretion of newly synthesized triacylglycerol without decreasing the secretion of triacylglycerol mass. Modification of microsomal membrane phospholipid fatty acid composition is associated with a decrease in microsomal triacylglycerol synthesis and diacylglycerol acyltransferase activities.  相似文献   

12.
Hepatocytes were derived from 2-3-day streptozotocin-diabetic rats and maintained in culture for up to 3 days. Compared with similar cultures from normal animals, these hepatocytes secreted less very-low-density-lipoprotein (VLDL) triacylglycerol, but the decrease in the secretion of VLDL non-esterified and esterified cholesterol was not so pronounced. This resulted in the secretion of relatively cholesterol-rich VLDL particles by the diabetic hepatocytes. Addition of insulin for a relatively short period (24 h) further decreased the low rates of VLDL triacylglycerol secretion from the diabetic hepatocytes. The secretion of VLDL esterified and non-esterified cholesterol also declined. These changes occurred irrespective of whether or not exogenous fatty acids were present in the culture medium. Little or no inhibitory effect of insulin was observed after longer-term (24-48 h) exposure to the hormone. Both dexamethasone and a mixture of lipogenic precursors (lactate plus pyruvate) stimulated VLDL triacylglycerol and cholesterol secretion, but not to the levels observed in hepatocytes from normal animals. The low rate of hepatic VLDL secretion in diabetes contrasts with the increase in whole-body VLDL production rate. This suggests that the intestine is a major source of plasma VLDL in insulin-deficient diabetes.  相似文献   

13.
Lipid and lipoprotein metabolism in Hep G2 cells   总被引:6,自引:0,他引:6  
Lipid composition, lipid synthesis and lipoprotein secretion by the Hep G2 cell line have been studied with substrate and insulin supplied under different conditions. The lipid composition of Hep G2 cells was close to that of normal human liver, except for a higher content in sphingomyelin (P less than 0.005) and a lower phosphatidylcholine/sphingomyelin ratio. Most of the [14C]triacylglycerols secreted into the medium were recovered by ultracentrifugation at densities of 1.006 to 1.020 g/ml. The main apolipoproteins secreted were apo B-100 and apo A-I. Hep G2 mRNA synthesized in vitro the pro-apolipoproteins A-I and E. Triacylglycerol secretion was 7.38 +/- 1.04 micrograms/mg cell protein per 20 h with 5.5 mM glucose in the medium and increased linearly with glucose concentration. Oleic acid (1 mM) increased the incorporation of [3H]glycerol into the medium and cell triacylglycerols by 251 and 899%, with a concomitant increment in cell triacylglycerols and cholesterol ester. Insulin (1 mU or 7 pmol/ml) inhibited triacylglycerol secretion and [35S]methionine incorporation into secreted protein by 47 and 28%, respectively, with a corresponding increase in the cells. Preincubation of cells with 2.5-10 mM mevalonolactone decreased the incorporation of [14C]acetate into cholesterol 6.2-fold, indicating an inhibitory effect on HMG-CoA reductase. It is concluded that in spite of some differences between Hep G2 and normal human hepatocytes, this line offers an alternative and reliable model for studies on liver lipid metabolism.  相似文献   

14.
Livers from normal fed or fasted (24h) rats were perfused in vitro to determine whether fatty acid affects the biosynthesis of very low density lipoprotein (VLDL) apoprotein. Oleate stimulated VLDL triacylglycerol output and increased incorporation of L-[4,5-3H]leucine into VLDL apoprotein in both the fed and fasted groups. The increased incorporation of [3H]leucine was mainly into VLDL-apoprotein E. The total mass of VLDL apoprotein secreted was also stimulated by oleate proportionately. These data suggest that fatty acids may stimulate hepatic synthesis and/or secretion of the VLDL apoproteins and that apo E, may be required for the formation and secretion of triacyl-glycerol in the VLDL.  相似文献   

15.
Chylomicron remnants labelled biologically with [3H]cholesterol were efficiently taken up by freshly isolated hepatocytes during a 3 h incubation in Krebs bicarbonate medium. Their [3H]cholesteryl ester was hydrolysed (74% net hydrolysis), and 0.1 mM-chloroquine could partially inhibit this hydrolysis, provided that hepatocytes were first preincubated for 2 h 30 min at 37 degrees C. This hydrolysis was also measured in preincubated cells with remnants double-labelled (3H and 14C) on their free cholesterol moiety; [3H]cholesterol arising from [3H]cholesteryl ester hydrolysis was recovered in the free [3H]cholesterol pool. A dose-response study showed saturation of remnant uptake at 180 micrograms of remnant protein/10(7) cells. Heparin (10 units/ml) increased remnant uptake by 63% (P less than 0.01), [3H]cholesteryl ester accumulation in the cell pellet by 110% (P less than 0.025) and hepatic lipase activity secreted in the medium by 2.4-fold (P less than 0.01) and by 3.3-fold (P less than 0.01) at the end of the preincubation and incubation periods respectively. Addition of 100 munits of semi-purified hepatic lipase preparation/flask stimulated remnant uptake by 44-69%, and [3H]cholesteryl ester accumulation in the presence of chloroquine by 2.1-fold (P less than 0.025). When hepatic lipase was incubated solely with the remnants, it decreased their triacylglycerol and phospholipid contents by 24% and 26% respectively. Thus freshly isolated hepatocytes may be used to study chylomicron-remnant uptake. Hepatic lipase, which seems to underly the stimulating effect of heparin, facilitates remnant uptake in vitro, and this could be mediated by at least one (or both) of its hydrolytic properties.  相似文献   

16.
The effects of chloroquine, verapamil and monensin on secretion of very-low-density lipoproteins (VLDLs) were studied in cultured rat hepatocytes. Maximum inhibition of VLDL-triacylglycerol secretion by 50–90% of control was reached at 200 μM chloroquine, 200 μM verapamil and 5 μM monensin, whereas no effect on cellular triacylglycerol synthesis was observed. The inhibition could be seen within 15 min and was reversible after washout of the drugs. Chloroquine and verapamil inhibited both cellular protein synthesis and protein secretion, whereas monesin reduced protein secretion without any effect on protein synthesis. Control experiments with cycloheximide revealed that intact protein synthesis was not necessary for secretion of VLDL-triacylglycerol during 2 h. Electron micrographs of cells treated with chloroquine, verapamil or monensin showed swollen Golgi cisternae containing VLDL-like particles. By morphometry, a more than 2-fold increase in volume fractions and size indices of Golgi complexes and secondary lysosomes was observed, except that monensin had no significant effect on these parameters of secondary lysosomes. These results suggest that the inhibition of VLDL secretion by chloroquine, verapamil and monensin which takes place in the Golgi complex might be due to disruption of trans-membrane proton gradients. An increase in pH of acidic Golgi vesicles may cause swelling and disturb sorting and membrane flow through this organelle.  相似文献   

17.
The effects of oleic acid on the biosynthesis and secretion of VLDL (very-low-density-lipoprotein) apoproteins and lipids were investigated in isolated perfused rat liver. Protein synthesis was measured by the incorporation of L-[4,5-3H]leucine into the VLDL apoproteins (d less than 1.006) and into apolipoproteins of the whole perfusate (d less than 1.21). Oleate did not affect incorporation of [3H]leucine into total-perfusate or hepatic protein. The infusion of oleate, however, increased the mass and radioactivity of the VLDL apoprotein in proportion to the concentration of oleate infused. Uptake of oleate was similar with livers from fed or fasted animals. Fasting itself (24 h) decreased the net secretion and incorporation of [3H]leucine into total VLDL apoprotein and decreased the output of VLDL protein by the liver. A linear relationship existed between the output of VLDL triacylglycerol (mumol/h per g of liver) and secretion and/or synthesis of VLDL protein. Net output of VLDL cholesterol and phospholipid also increased linearly with VLDL-triacylglycerol output. Oleate stimulated incorporation of [3H]leucine into VLDL apo (apolipoprotein) E and apo C by livers from fed animals, and into VLDL apo Bh, B1, E and C by livers from fasted rats. The incorporation of [3H]leucine into individual apolipoproteins of the total perfusate lipoprotein (d less than 1.210 ultracentrifugal fraction) was not changed significantly by oleate during perfusion of livers from fed rats, suggesting that the synthesis de novo of each apolipoprotein was not stimulated by oleate. This is in contrast with that observed with livers from fasted rats, in which the synthesis of the total-perfusate lipoprotein (d less than 1.210 fraction) apo B, E and C was apparently stimulated by oleate. The observations with livers from fed rats suggest redistribution of radioactive apolipoproteins to the VLDL during or after the process of secretion, rather than an increase of apoprotein synthesis de novo. It appears, however, that the biosynthesis of apo B1, Bh, E and C was stimulated by oleic acid in livers from fasted rats. Since the incorporations of [3H]leucine into the VLDL and total-perfusate apolipoproteins were increased in fasted-rat liver when the fatty acid was infused, part of the apparent stimulated synthesis of the VLDL apoprotein may be in response to the increased formation and secretion of VLDL lipid.  相似文献   

18.
Primary cultures of rat hepatocytes were used to study the effects of eicosapentaenoic and oleic acid on synthesis and secretion of triacylglycerols associated with very low density lipoproteins. From the experiments the following was observed. Oleic acid markedly stimulates secretion as well as synthesis of triacylglycerols, whereas eicosapentaenoic acid causes very little or no increase in secretion or synthesis as compared to a fatty-acid-free medium. The effects could already be observed after 15 min incubation. The inhibitory effect of eicosapentaenoic acid is reversible within 1-2 h. Eicosapentaenoic acid inhibits much of the stimulatory effect of oleic acid on synthesis and secretion of triacylglycerols. The cellular uptake of eicosapentaenoic acid is somewhat higher than that of oleic acid and the metabolism of these fatty acids to acid-soluble materials is similar. Eicosapentaenoic acid does not affect the secretory pathway of triacylglycerols per se. From these results it may be concluded that the mechanism for the inhibitory effect of eicosapentaenoic acid on triacylglycerol secretion is probably via reduced triacylglycerol synthesis.  相似文献   

19.
The hamster was developed as a model to study very low density lipoprotein (VLDL) metabolism, since, as is the case in humans, the hamster liver was found to synthesize apoB-100 and not apoB-48. The effect of inhibiting fatty acid synthesis on the hepatic secretion of VLDL triglyceride (TG) and apolipoprotein (apo) B-100 in this model was then investigated. In an in vivo study, hamsters were fed a chow diet containing 0.15% TOFA (5-tetradecyloxy-2-furancarboxylic acid), an inhibitor of acetyl-CoA carboxylase. After 6 days of treatment, plasma triglyceride and cholesterol levels were decreased by 30.2% and 11.6%, respectively. When the secretion of VLDL-TG by the liver was measured in vivo after injection of Triton WR 1339, TOFA treatment was found to decrease VLDL-TG secretion by 40%. In subsequent in vitro studies utilizing cultured primary hamster hepatocytes, incubation with 20 microM TOFA for 4 h resulted in 98% and 76% inhibition in fatty acid and triglyceride synthesis, respectively; VLDL-TG secretion was decreased by 90%. When hepatocytes were pulsed with [3H]leucine, incubation with TOFA resulted in a 50% decrease in the incorporation of radiolabel into secreted VLDL apoB-100. The results of this study indicate that inhibition of intracellular triglyceride synthesis decreases the secretion of VLDL-TG and apoB-100, and does not result in the secretion of a dense, triglyceride-depleted lipoprotein.  相似文献   

20.
High rates of hepatic cellular triacylglycerol synthesis and very-low-density-lipoprotein (VLDL) triacylglycerol output were maintained in vitro for at least 3 days when hepatocytes were cultured in a medium lacking insulin but supplemented with 1 microM-dexamethasone, 10 mM-lactate, 1 mM-pyruvate and 0.75 mM-oleate (supplemented medium). Under these conditions VLDL output remained constant, whereas cell triacyglycerol content increased 10-fold over 3 days, suggesting that the secretory process was saturated. Insulin, present during the first 24 h period, enhanced the storage of cellular triacylglycerol by inhibiting the secretion of VLDL. This stored triacyglycerol was subsequently released into the medium as VLDL if insulin was removed. With the supplemented medium the increased rate of VLDL secretion after insulin removal exceeded that observed under 'saturating' conditions, suggesting that pre-treatment with insulin enhanced the capacity for VLDL secretion. In contrast with the short-term (24 h) effects of insulin, longer-term exposure (greater than 48 h) to insulin enhanced the secretion of VLDL compared with insulin-untreated cultures. Under these conditions, insulin increased the net rates of triacylglycerol synthesis. The results suggest that insulin affects the secretion of VLDL triacylglycerol by two distinct and opposing mechanisms: first, by direct inhibition of secretion; second by increasing triacylglycerol synthesis, which stimulates secretion. The net effect at any time depends upon the relative importance of each of these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号