首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosystem Ⅱ reaction center D1/D2/Cytochrome b559 complex loses its bound secondary electron acceptor QA and QB during isolation and purification. The artificial plastoquinone can reconstitute with the complex. The reconstitution of decyl-plastoquinone (DPQ) with D1/D2/Cytochrome b559 complex results in a decrease of the fraction of the two long lived fluorescence decay components (24 ns and 73 ns) coupled with photochemical activities to the total fluorescence yields, as well as a decrease of the total fluorescence intensity and a blue-shift of maximum emission wavelength. These results suggest that as the electron acceptor of reduced Pheo, DPQ restricts the charge recombination of P680+ Pheo-, and the two long lived fluorescence decay components (24 ns and 73 ns) come from the recombination. Although DPQ reconstitution has little effect on the susceptibility of Chi a to photodamage, β-carotene can easily be photodamaged after DPQ reconstitution. This is probably related to the physiological function of β-carotene.  相似文献   

2.
Nonradiative dissipation of excitation energy is the major photoprotective mechanism in plants. The formation of zeaxanthin in the antenna of photosystem II has been shown to correlate with the onset of nonphotochemical quenching in vivo. We have used recombinant CP29 protein, over-expressed in Escherichia coli and refolded in vitro with purified pigments, to obtain a protein indistinguishable from the native complex extracted from thylakoids, binding either violaxanthin or zeaxanthin together with lutein. These recombinant proteins and the native CP29 were used to measure steady-state chlorophyll fluorescence emission and fluorescence decay kinetics. We found that the presence of zeaxanthin bound to CP29 induces a approximately 35% decrease in fluorescence yield with respect to the control proteins (the native and zeaxanthin-free reconstituted proteins). Fluorescence decay kinetics showed that four components are always present but lifetimes (tau) as well as relative fluorescence quantum yields (rfqy) of the two long-lived components (tau3 and tau4) are modified by the presence of zeaxanthin. The most relevant changes are observed in the rfqy of tau3 and in the average lifetime ( approximately 2.4 ns with zeaxanthin and 3.2-3.4 ns in the control proteins). When studied in vitro, no significant effect of acidic pH (5.2-5.3) is observed on chlorophyll A fluorescence yield or kinetics. The data presented show that recombinant CP29 is able to bind zeaxanthin and this protein-bound zeaxanthin induces a significant quenching effect.  相似文献   

3.
Vassiliev S  Lee CI  Brudvig GW  Bruce D 《Biochemistry》2002,41(40):12236-12243
Chlorophyll fluorescence decay kinetics in photosynthesis are dependent on processes of excitation energy transfer, charge separation, and electron transfer in photosystem II (PSII). The interpretation of fluorescence decay kinetics and their accurate simulation by an appropriate kinetic model is highly dependent upon assumptions made concerning the homogeneity and activity of PSII preparations. While relatively simple kinetic models assuming sample heterogeneity have been used to model fluorescence decay in oxygen-evolving PSII core complexes, more complex models have been applied to the electron transport impaired but more highly purified D1-D2-cyt b(559) preparations. To gain more insight into the excited-state dynamics of PSII and to characterize the origins of multicomponent fluorescence decay, we modeled the emission kinetics of purified highly active His-tagged PSII core complexes with structure-based kinetic models. The fluorescence decay kinetics of PSII complexes contained a minimum of three exponential decay components at F(0) and four components at F(m). These kinetics were not described well with the single radical pair energy level model, and the introduction of either static disorder or a dynamic relaxation of the radical pair energy level was required to simulate the fluorescence decay adequately. An unreasonably low yield of charge stabilization and wide distribution of energy levels was required for the static disorder model, and we found the assumption of dynamic relaxation of the primary radical pair to be more suitable. Comparison modeling of the fluorescence decay kinetics from PSII core complexes and D1-D2-cyt b(559) reaction centers indicated that the rates of charge separation and relaxation of the radical pair are likely altered in isolated reaction centers.  相似文献   

4.
G. Renger  B. Hanssum  H. Gleiter  H. Koike  Y. Inoue 《BBA》1988,936(3):435-446
The interaction of exogenous quinones with the Photosystem II (PS II) acceptor side has been analyzed by measurements of flash-induced 320 nm absorption changes, transient flash-induced variable fluorescence changes, thermoluminescence emission and oxygen yield in dark-adapted thylakoids and PS II membrane fragments. Two classes of 1,4-benzoquinones were shown to give rise to remarkably different reaction patterns. (A) Phenyl-p-benzoquinone (Ph-p-BQ) -type compounds give rise to a marked binary oscillation of the initial amplitudes of 320 nm absorption changes induced by a flash train in dark-adapted PS II membrane fragments and a retardation of the decay kinetics of the flash-induced variable fluorescence. The electron transfer reactions to these type of quinones are severely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). (B) In the presence of tribromotoluquinone (TBTQ) a different oscillation pattern of the 320 nm absorption changes is observed characterized by a marked relaxation after the first flash in the 5 ms domain. This relaxation is insensitive to 10 μM DCMU. Likewise the decay of the flash-induced variable fluorescence in TBTQ-treated samples is much less sensitive to DCMU than in control. The thermoluminescence emission exhibits an oscillation in samples incubated for 5 min with TBTQ before addition of 30 μM DCMU. Under the same conditions a significant flash-induced oxygen evolution is observed only after the third and fourth flash, respectively, whereas in the presence of TBTQ alone a normal oscillation pattern is observed. The different functional patterns of PS II caused by the two types of classes of exogenous quinones are interpreted by their binding properties: a noncovalent association with the QB-site of Ph-p-BQ-type quinones versus a tight (covalent?) binding in the vicinity of QA (possibly also at the QB-site) in the case of halogenated 1,4-benzoquinones. The mechanistic implications of these findings are discussed.  相似文献   

5.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSII) (FJF,, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in FJ/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover, trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHClI) from PSII reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

6.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 degrees C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing "activity gels". Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being "self-digested", also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 degrees C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg(2+), and inhibited by Zn(2+), Cd(2+), EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing "activity gels" or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

7.
G Desie  N Boens  F C De Schryver 《Biochemistry》1986,25(25):8301-8308
The tryptophan environments in crystalline alpha-chymotrypsin were investigated by fluorescence. The heterogeneous emission from this multitryptophan enzyme was resolved by time-correlated fluorescence spectroscopy. The fluorescence decays at 296-nm laser excitation and various emission wavelengths could be characterized by a triple-exponential function with decay times tau 1 = 150 +/- 50 ps, tau 2 = 1.45 +/- 0.25 ns, and tau 3 = 4.2 +/- 0.4 ns. The corresponding decay-associated emission spectra of the three components had maxima at about 325, 332, and 343 nm. The three decay components in this enzyme can be correlated with X-ray crystallographic data [Birktoft, J.J., & Blow, D.M. (1972) J. Mol. Biol. 68, 187-240]. Inter- and intramolecular tryptophan-tryptophan energy-transfer efficiencies in crystalline alpha-chymotrypsin were computed from the accurately known positions and orientations of all tryptophan residues. These calculations indicate that the three fluorescence decay components in crystalline alpha-chymotrypsin can be assigned to three distinct classes of tryptophyl residues. Because of the different proximity of tryptophan residues to neighboring internal quenching groups, the decay times of the three classes are different. Decay tau 1 can be assigned to Trp-172 and Trp-215 and tau 2 to Trp-51 and Trp-237, while the tryptophyl residues 27, 29, 141, and 207 all have decay time tau 3.  相似文献   

8.
The (time-resolved) fluorescence properties of dityrosine in the outermost layer of the spore wall of Saccharomyces cerevisiae were investigated. Steady-state spectra revealed an emission maximum at 404 nm and a corresponding excitation maximum at 326 nm. The relative fluorescence quantum yield decreased with increasing proton concentration. The fluorescence decay of yeast spores was found to be nonexponential and differed pronouncedly from that of unbound dityrosine in water. Analysis of the spore decay recorded at lambda ex = 323 nm and lambda em = 404 nm by an exponential series (ESM) algorithm revealed a bimodal lifetime distribution with maxima centered at tau 1C = 0.5 ns and tau 2C = 2.6 ns. The relative amplitudes of the two distributions are shown to depend on the emission wavelength, indicating contributions from spectrally different dityrosine chromophores. On quenching the spore fluorescence with acrylamide, a downward curvature of the Stern-Volmer plot was obtained. A multitude of chromophores more or less shielded from solvent in the spore wall is proposed to account for the nonlinear quenching of the total spore fluorescence. Analysis of the fluorescence anisotropy decay revealed two rotational correlation times (phi 1 = 0.9 ns and phi 2 = 30.6 ns) or a bimodal distribution of rotational correlation times (centers at 0.7 ns and 40 ns) when the data were analyzed by the maximum entropy method (MEM). We present a model that accounts for the differences between unbound (aqueous) and bound (incorporated in the spore wall) dityrosine fluorescence. The main feature of the photophysical model for yeast spores is the presence of at least two species of dityrosine chromophores differing in their chemical environments. A hypothetical photobiological role of these fluorophores in the spore wall is discussed: the protection of the spore genome from mutagenic UV light.  相似文献   

9.
In the present study the rate of triplet transfer from chlorophyll to carotenoids in solubilized LHCII was investigated by flash spectroscopy using laser pulses of approximately 2 ns for both pump and probe. Special attention has been paid to calibration of the experimental setup and to avoid saturation effects. Carotenoid triplets were identified by the pronounced positive peak at approximately 507 nm in the triplet-singlet difference spectra. DeltaOD (507 nm) exhibits a monoexponential relaxation kinetics with characteristic lifetimes of 2-9 micros (depending on the oxygen content) that was found to be independent of the pump pulse intensity. The rise of DeltaOD (507 nm) was resolved via a pump probe technique where an optical delay of up to 20 ns was used. A thorough analysis of these experimental data leads to the conclusion that the kinetics of carotenoid triplet formation in solubilized LHCII is almost entirely limited by the lifetime of the excited singlet state of chlorophyll but neither by the pulse width nor by the rate constant of triplet-triplet transfer. Within the experimental error the rate constant of triplet-triplet transfer from chlorophyll to carotenoids was estimated to be kTT > (0.5 ns)-1. This value exceeds all data reported so far by at least one order of magnitude. The implications of this finding are briefly discussed.  相似文献   

10.
Delayed fluorescence in photosynthesis   总被引:1,自引:0,他引:1  
Photosynthesis is a very efficient photochemical process. Nevertheless, plants emit some of the absorbed energy as light quanta. This luminescence is emitted, predominantly, by excited chlorophyll a molecules in the light-harvesting antenna, associated with Photosystem II (PS II) reaction centers. The emission that occurs before the utilization of the excitation energy in the primary photochemical reaction is called prompt fluorescence. Light emission can also be observed from repopulated excited chlorophylls as a result of recombination of the charge pairs. In this case, some time-dependent redox reactions occur before the excitation of the chlorophyll. This delays the light emission and provides the name for this phenomenon—delayed fluorescence (DF), or delayed light emission (DLE). The DF intensity is a decreasing polyphasic function of the time after illumination, which reflects the kinetics of electron transport reactions both on the (electron) donor and the (electron) acceptor sides of PS II. Two main experimental approaches are used for DF measurements: (a) recording of the DF decay in the dark after a single turnover flash or after continuous light excitation and (b) recording of the DF intensity during light adaptation of the photosynthesizing samples (induction curves), following a period of darkness. In this paper we review historical data on DF research and recent advances in the understanding of the relation between the delayed fluorescence and specific reactions in PS II. An experimental method for simultaneous recording of the induction transients of prompt and delayed chlorophyll fluorescence and decay curves of DF in the millisecond time domain is discussed.  相似文献   

11.
Low-temperature absorption and fluorescence spectra of fully active cores and membrane-bound PS II preparations are compared. Detailed temperature dependence of fluorescence spectra between 5 and 70 K are presented as well as 1.7-K fluorescence line-narrowed (FLN) spectra of cores, confirming that PS II emission is composite. Spectra are compared to those reported for LHCII, CP43, CP47 and D1/D2/cytit b559 subunits of PS II. A combination of subunit spectra cannot account for emission of active PS II. The complex temperature dependence of PS II fluorescence is interpretable by noting that excitation transfer from CP43 and CP47 to the reaction centre is slow, and strongly dependent on the precise energy at which a ‘slow-transfer’ pigment in CP43 or CP47 is located within its inhomogeneous distribution. PS II fluorescence arises from CP43 and CP47 ‘slow-transfer’ states, convolved by this dependence. At higher temperatures, thermally activated excitation transfer to the PS II charge-separating system bypasses such bottlenecks. As the charge-separating state of active PS II absorbs at >700 nm, PS II emission in the 680–700 nm region is unlikely to arise from reaction centre pigments. PS II emission at physiological temperatures is discussed in terms of these results.  相似文献   

12.
Redox-controlled, reversible phosphorylation of the thylakoid light harvesting complex II (LHCII) regulates its association with photosystems (PS) I or II and thus, energy distribution between the two photosystems (state transition). Illumination of solubilized LHCII enhances exposure of the phosphorylation site at its N-terminal domain to protein kinase(s) and tryptic cleavage in vitro [Zer et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8277-8282]. Here we report that short illumination (5-10 min, 15-30 micromol m(-2) s(-1)) enhances the accessibility of LHCII phosphorylation site to kinase(s) activity also in isolated thylakoids. However, prolonged illumination or higher light intensities (30 min, 80-800 micromol m(-2) s(-1)) prevent phosphorylation of LHCII in the isolated membranes as well as in vivo, although redox-dependent protein kinase activity persists in the illuminated thylakoids toward exogenous solubilized LHCII. This phenomenon, ascribed to light-induced inaccessibility of the phosphorylation site to the protein kinase(s), affects in a similar way the accessibility of thylakoid LHCII N-terminal domain to tryptic cleavage. The illumination effect is not redox related, decreases linearly with temperature from 25 to 5 degrees C and may be ascribed to light-induced conformational changes in the complex causing lateral aggregation of dephosphorylated LHCII bound to and/or dissociated from PSII. The later state occurs under conditions allowing turnover of the phospho-LHCII phosphate. The light-induced inaccessibility of LHCII to the membrane-bound protein kinase reverses readily in darkness only if induced under LHCII-phosphate turnover conditions. Thus, phosphorylation prevents irreversible light-induced conformational changes in LHCII allowing lateral migration of the complex and the related state transition process.  相似文献   

13.
1. The decay of delayed fluorescence from chloroplasts blocked with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and uncoupled with gramicidin has been measured in the time range 0.75--45 ms by use of a laser phosphoroscope. 2. The decays have been analysed as the sum of three first-order components of approximate half-lives 0.2, 2.5 and 300 ms by a computer-assisted least-squares fit procedure. 3. The prompt fluorescence yield of the chloroplasts was manipulated by changing the cation concentration of the chloroplast-suspending medium. 4. Analysis of the concentration dependence of the components of the delayed fluorescence decay and of the prompt fluorescence inductions indicates that the emission yield of the intermediate (tau approximately 2.5 ms) component of the decay is equal to the fluorescence yield of a Photosystem II photosynthetic unit with an open trap, and that for the slow (tau approximately 300 ms) component the emission yield is equal to the total Photosystem II prompt fluorescence yield. 5. It is concluded that the delayed fluorescence yield in the time range studied is a complex function of time, which may be due to there being different mechanisms leading to delayed fluorescence production at short and long times after cessation of illumination.  相似文献   

14.
Moya I  Silvestri M  Vallon O  Cinque G  Bassi R 《Biochemistry》2001,40(42):12552-12561
We have studied the time-resolved fluorescence properties of the light-harvesting complexes (Lhc) of photosystem II (Lhcb) in order to obtain information on the mechanism of energy dissipation (non-photochemical quenching) which is correlated to the conversion of violaxanthin to zeaxanthin in excess light conditions. The chlorophyll fluorescence decay of Lhcb proteins LHCII, CP29, CP26, and CP24 in detergent solution is mostly determined by two lifetime components of 1.2-1.5 and 3.6-4 ns while the contribution of the faster component is higher in CP29, CP26, and CP24 with respect to LHCII. The xanthophyll composition of Lhc proteins affects the ratio of the lifetime components: when zeaxanthin is bound into the site L2 of LHCII, the relative amplitude of the faster component is increased and, consequently, the chlorophyll fluorescence quenching is enhanced. Analysis of quenching in mutants of Arabidopsis thaliana, which incorporate either violaxanthin or zeaxanthin in their Lhc proteins, shows that the extent of quenching is enhanced in the presence of zeaxanthin. The origin of the two fluorescence lifetimes was analyzed by their temperature dependence: since lifetime heterogeneity was not affected by cooling to 77 K, it is concluded that each lifetime component corresponds to a distinct conformation of the Lhc proteins. Upon incorporation of Lhc proteins into liposomes, a quenching of chlorophyll fluorescence was observed due to shortening of all their lifetime components: this indicates that the equilibrium between the two conformations of Lhcb proteins is displaced toward the quenched conformation in lipid membranes or thylakoids with respect to detergent solution. By increasing the protein density in the liposomes, and therefore the probability of protein-protein interactions, a further decrease of fluorescence lifetimes takes place down to values typical of quenched leaves. We conclude that at least two major factors determine the quenching of chlorophyll fluorescence in Lhcb proteins, i.e., intrasubunit conformational change and intersubunit interactions within the lipid membranes, and that these processes are both important in the photoprotection mechanism of nonphotochemical quenching in vivo.  相似文献   

15.
Aggregates and solubilized trimers of LHCII were characterized by circular dichroism (CD), linear dichroism and time-resolved fluorescence spectroscopy and compared with thylakoid membranes in order to evaluate the native state of LHCII in vivo. It was found that the CD spectra of lamellar aggregates closely resemble those of unstacked thylakoid membranes whereas the spectra of trimers solubilized in n-dodecyl-beta,D-maltoside, n-octyl-beta,D-glucopyranoside, or Triton X-100 were drastically different in the Soret region. Thylakoid membranes or LHCII aggregates solubilized with detergent exhibited CD spectra similar to the isolated trimers. Solubilization of LHCII was accompanied by profound changes in the linear dichroism and increase in fluorescence lifetime. These data support the notion that lamellar aggregates of LHCII retain the native organization of LHCII in the thylakoid membranes. The results indicate that the supramolecular organization of LHCII, most likely due to specific trimer-trimer contacts, has significant impact on the pigment interactions in the complexes.  相似文献   

16.
J B Ross  K W Rousslang  L Brand 《Biochemistry》1981,20(15):4361-4369
The direct time-resolved fluorescence anisotropy of the single tryptophan residue in the polypeptide hormone adrenocorticotropin-(1-24) (ACTH) and the fluorescence decay kinetics of this residue (Trp-9) are reported. Two rotational correlation times are observed. One, occurring on the subnanosecond time scale, reflects the rotation of the indole ring, and the other, which extends into the nanosecond range, is dominated by the complex motions of the polypeptide chain. The fluorescence lifetimes of the single tryptophan in glucagon (Trp-25) and the 23-26 glucagon peptide were also measured. In all cases the fluorescence kinetics were satisfied by a double-exponential decay law. The fluorescence lifetimes of several tryptophan and indole derivatives and two tryptophan dipeptides were examined in order to interpret the kinetics. In close agreement with the findings of Szabo and Rayner [Szabo, A. G., & Rayner, D. M. (1980) J. Am. Chem. Soc. 102, 554-563], the tryptophan zwitterion exhibits emission wavelength dependent double-exponential decay kinetics. At 320 nm tau 1 = 3.2 ns and tau 2 = 0.8 ns, with alpha 1 = 0.7 and alpha 2 = 0.3. Above 380 nm only the 3.2-ns component is observed. By contrast the neutral derivative N-acetyltryptophanamide has a single exponential decay of 3.0 ns. The multiexponential decay kinetics of the polypeptides are discussed in terms of flexibility of the polypeptide chain and neighboring side-chain interactions.  相似文献   

17.
Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes indicated age-induced association of LHCII of PSII with PSI obtained from 27-day cotyledons. We modified our isolation protocols by increasing the duration of detergent Triton X-100 treatment for preparing the PSI and LHCII complexes from 27-day cotyledons. However, the PSI complexes isolated from senescing samples invariably proved to have significantly low Chl a/b ratio suggesting an age induced lateral movement and possible association of LHCII with PSI complexes. The analyses of polypeptide compositions of LHCII and PSI holocomplexes isolated from 6-day control and 27-day senescing cotyledons showed distinctive differences in their profiles. The presence of 26-28 kDa polypeptide in PSI complexes from 27-day cotyledons, but not in 6-day control PSI complexes is in agreement with the notion that senescence induced migration of LHCII to stroma lamellae and its possible association with PSI. We suggest that the migration of LHCII to the stroma lamellae region and its possible association with PSI might cause the destacking and flattening of grana structure during senescence of the chloroplasts. Such structural changes in light harvesting antenna are likely to alter energy transfer between two photosystems. The nature of aging induced migration and association of LHCII with PSI and its existence in other senescing systems need to be estimated in the future.  相似文献   

18.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 °C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing “activity gels”. Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being “self-digested”, also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 °C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg2+, and inhibited by Zn2+, Cd2+, EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing “activity gels” or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

19.
Aggregates and solubilized trimers of LHCII were characterized by circular dichroism (CD), linear dichroism and time-resolved fluorescence spectroscopy and compared with thylakoid membranes in order to evaluate the native state of LHCII in vivo. It was found that the CD spectra of lamellar aggregates closely resemble those of unstacked thylakoid membranes whereas the spectra of trimers solubilized in n-dodecyl-β,d-maltoside, n-octyl-β,d-glucopyranoside, or Triton X-100 were drastically different in the Soret region. Thylakoid membranes or LHCII aggregates solubilized with detergent exhibited CD spectra similar to the isolated trimers. Solubilization of LHCII was accompanied by profound changes in the linear dichroism and increase in fluorescence lifetime. These data support the notion that lamellar aggregates of LHCII retain the native organization of LHCII in the thylakoid membranes. The results indicate that the supramolecular organization of LHCII, most likely due to specific trimer-trimer contacts, has significant impact on the pigment interactions in the complexes.  相似文献   

20.
Thylakoids isolated from leaves of winter rye (Secale cereale L. cv Puma) grown at either 20 or 5°C were extracted with the nonionic detergents Triton X-100 and octyl glucoside. Less total chlorophyll was extracted from 5°C thylakoids by these detergents under all conditions, including pretreatment with cations. Thylakoids from either 20 or 5°C leaves were solubilized in 0.7% Triton X-100 and centrifuged on sucrose gradients to purify the light harvesting complex (LHCII). Greater yields of LHCII were obtained by cation precipitation of particles derived from 20°C thylakoids than from 5°C thylakoids. When 20 and 5°C thylakoids were phosphorylated and completely solubilized in sodium dodecyl sulfate, no differences were observed in the 32Pi-labeling characteristics of the membrane polypeptides. However, when phosphorylated thylakoids were extracted with octyl glucoside, extraction of LHCII associated with the 5°C thylakoids was markedly reduced in comparison with the extraction of LHCII from 20°C membranes. Since 20 and 5°C thylakoids exhibited significant differences in the Chl content and Chl a/b ratios of membrane fractions produced after solubilization with either Triton X-100 or octyl glucoside, and since few differences between the proteins of the two membranes could be observed following complete denaturation in sodium dodecyl sulfate, we conclude that the integral structure of the thylakoid membrane is affected during rye leaf development at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号