首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Phonotactic responses ofTeleogryllus oceanicus were studied with two methods. Tethered crickets were stimulated with sound while they performed stationary flight, and steering responses were indicated by abdominal movements. Walking crickets tracked a sound source while their translational movements were compensated by a spherical treadmill, and their walking direction and velocity were recorded.During both flight and walking, crickets attempted to locomote towards the sound source when a song model with 5 kHz carrier frequency was broadcast (positive phonotactic response) and away from the source when a song model with 33 kHz carrier frequency was used (negative phonotactic response) (Figs. 2, 4).One-eared crickets attempted, while flying, to steer towards the side of the remaining ear when stimulated with the 5 kHz model, and away from that side in response to the 33 kHz model (Fig. 3). While walking, one-eared crickets circled towards and away from the intact side in response to the 5 kHz and 33 kHz models, respectively (Fig. 6).Positive and negative responses differed in their temporal pattern requirements. Phonotactic responses were not elicited when a non-calling song pattern (2 pulses/s) was played with a carrier frequency appropriate for positive phonotactic responses (5 kHz), but this pattern did elicit negative responses with 33 kHz carrier frequency (Figs. 7–10). When an intermediate carrier frequency, 15 kHz, was used, the response type (positive or negative) depended on the stimulus temporal pattern; the calling song pattern elicited primarily positive responses, while the non-calling song pattern elicited negative responses (Figs. 11, 12, 14, 15). A curious phenomenon was often observed in the flight steering responses; while most responses to 15 kHz song pattern were primarily positive, they often had an initial negative component which was supplanted by the positive component of the response after approximately 2–5 s (Figs. 11, 12).In recent experiments onGryllus campestris, Thorson et al. (1982) described frequency-dependent errors in phonotactic direction (anomalous phonotaxis) and showed how such errors might arise from the frequency-dependent directional properties of the cricket's auditory apparatus. Our findings, particularly the dependence of response type on temporal pattern when 15 kHz carrier frequency was used, argue that frequency-dependent directional properties alone cannot account for positive and negative phonotaxis inT. oceanicus. Rather, these represent qualitatively different attempts to locomote towards and away from the sound source, respectively.We discuss the possibility that central integration of these opposing tendencies might contribute to anomalous phonotaxis.  相似文献   

2.
Summary We have investigated the effects of alterations of several temporal parameters of auditory stimuli, as well as of stimulus intensity changes, on the attractiveness of these stimuli to femaleTeleogryllus oceanicus, as measured by monitoring sound-elicited flight steering responses. AlthoughT. oceanicus has a rhythmically complex calling song, females are attracted by a simpler model consisting of regularly repeating sound pulses. We have found that the two major temporal features of this model, sound pulse duration and pulse repetition rate, are both important for eliciting phonotactic steering responses.Stimuli with altered temporal features had intensity thresholds indistinguishable from the control stimulus (Fig. 3). The majority of crickets, however, ceased to respond to the altered stimuli when the stimulus intensity was sufficiently increased (Figs. 4–7). In some cases, intensity increases resulted in a reversal of the steering response from positive to negative (Fig. 10). Effects of altered temporal parameters were also apparent at lower stimulus intensities, where the amplitudes of steering responses to stimuli with altered parameters were smaller than those in response to the control stimulus (Figs. 8, 9).We considered the possibility that the cessation of responsiveness to stimuli with altered temporal features was due to a temporal pattern-specific diminution of binaural cues for sound localization at high intensities. Experiments performed with unilaterally deafened crickets (Fig. 11) led us to conclude that this was not the case, and that our findings instead reflect the properties of the song recognition mechanism.Abbreviations UIL upper intensity limit - RAF ratio of abdominal flexion  相似文献   

3.
SYNOPSIS. Field crickets depend on acoustic organs to detectthe presence of potential predators as well as conspecific crickets.Predators are recognized largely on the basis of spectral frequenciesthat are contained in their acoustic signals. Puffs of air andvery low frequencies activate a cricket's cereal receptors andultrasonic frequencies activate their tympanal organs. Bothof these acoustic stimuli release "escape behavior," in theform of evasive movements. An identified neuron sensitive toultrasound is described. Crickets recognize singing conspecificsby both frequency and temporal properties of cricket songs;however species recognition requires specific temporal informationin calling songs. While previous studies have emphasized therole of songs on female behavior, males also recognize conspecificsongs; sexual differences in recognition behavior occur.  相似文献   

4.
The steering responses of three species of field crickets, Teleogryllus oceanicus, T. commodus, and Gryllus bimaculatus, were characterized during tethered flight using single tone-pulses (rather than model calling song) presented at carrier frequencies from 3-100 kHz. This range of frequencies encompasses the natural songs of crickets (4-20 kHz, Fig. 1) as well as the echolocation cries of insectivorous bats (12-100 kHz). The single-pulse stimulus paradigm was necessary to assess the aversive nature of high carrier frequencies without introducing complications due to the attractive properties of repeated pulse stimuli such as model calling songs. Unlike the natural calling song, single tone-pulses were not attractive and did not elicit positive phonotactic steering even when presented at the calling song carrier frequency (Figs. 2, 3, and 9). In addition to temporal pattern, phonotactic steering was sensitive to carrier frequency as well as sound intensity. Three discrete flight steering behaviors positive phonotaxis, negative phonotaxis and evasion, were elicited by appropriate combinations of frequency, temporal pattern and sound intensity (Fig. 12). Positive phonotactic steering required a model calling song temporal pattern, was tuned to 5 kHz and was restricted to frequencies below 9 kHz. Negative phonotactic steering, similar to the 'early warning' bat-avoidance behavior of moths, was produced by low intensity (55 dB SPL) tone-pulses at frequencies between 12 and 100 kHz (Figs. 2, 3, and 9). In contrast to model calling song, single tone-pulses of high intensity 5-10 kHz elicited negative phonotactic steering; low intensity ultrasound (20-100 kHz) produced only negative phonotactic steering, regardless of pulse repetition pattern. 'Evasive', side-to-side steering, similar to the 'last-chance' bat-evasion behavior of moths was produced in response to high intensity (greater than 90 dB) ultrasound (20-100 kHz). Since the demonstration of negative phonotactic steering did not require the use of a calling song temporal pattern, avoidance of ultrasound cannot be the result of systematic errors in localizing an inherently attractive stimulus when presented at high carrier frequencies. Unlike attraction to model calling song, the ultrasound-mediated steering responses were of short latency (25-35 ms) and were produced in an open loop manner (Fig. 4), both properties of escape behaviors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Phonotaxis in flying crickets   总被引:1,自引:1,他引:0  
The effects of two-tone stimuli on the high frequency bat-avoidance steering behavior of flying crickets (Teleogryllus oceanicus) were studied during tethered flight. Similarly, the effects of two-tone stimuli on the ultrasound sensitive auditory interneuron, Int-1, which elicits this behavior, were studied using intracellular staining and recording techniques. When a low frequency tone (3-8 kHz) was presented simultaneously with an aversive high frequency tone (in a two-tone stimulus paradigm), the high frequency avoidance steering behavior was suppressed. Suppression was optimal when the low frequency tone was between 4 and 5 kHz and about 10-15 dB louder than the high frequency tone (Figs. 2, 3). Best suppression occurred when the low frequency tone-pulse just preceded or overlapped the high frequency tone-pulse, indicating that the suppressive effects of 5 kHz could last for up to 70 ms (Fig. 4). The threshold for avoidance of the bat-like stimulus was elevated when model bat biosonar (30 kHz) was presented while the animal was performing positive phonotaxis toward 5 kHz model calling song, but only if the calling song intensity was relatively high (greater than 70-80 dB SPL) (Fig. 1). However, avoidance steering could always be elicited as long as the calling song was not more than 10 dB louder than the ultrasound (Fig. 1). This suppressive effect did not require performance of positive phonotaxis to the calling song (Fig. 2) and was probably due to the persistence of the suppressive effects of the 5 kHz model calling song (Fig. 4). The requirement for relatively high intensities of calling song suggest that the suppression of bat-avoidance by the calling song is not likely to be of great significance in nature. The high frequency harmonics of the male cricket's natural calling song overlap the lower frequency range used by insectivorous bats (10-20 kHz) and are loud enough to elicit avoidance behavior in a flying female as she closely approaches a singing male (Fig. 5). The high frequency 'harmonics' of a model calling song were aversive even if presented with a normally attractive temporal pattern (pulse repetition rate of 16 pps) (Fig. 6A). When the 5 kHz 'fundamental' was added to one of the high frequency 'harmonics', in a two-tone stimulus paradigm, this complex model calling song was attractive; the high frequency 'harmonic' no longer elicited the avoidance behavior (Fig. 6) and the animals steered toward the model CS. Thus, addition of 5 kHz to a high frequency harmonic of the calling song 'masked' the aversive nature of this stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Nearest neighbor analyses of the field crickets Gryllus integer, G. veletis, and Teleogryllus oceanicus demonstrated that calling ♂♂ were aggregated. Broadcasts of conspecific song to calling ♂♂ indicated that attraction of neighboring ♂♂ maintained inter-male distances. Broadcasts of G. integer song through aggregated and isolated loudspeakers showed that the total number of crickets and parasitoid flies, Euphasiopteryx ochracea, attracted to aggregated loudspeakers was greater than that to an isolate. The average number of attracted crickets and flies in an aggregation was comparable to the isolated total.  相似文献   

7.
Summary Phonotactic behavior was studied in male crickets,Teleogryllus oceanicus. Tethered flying males were presented with electronically synthesized calling song models in a two-choice phonotaxis assay, and their song preferences were determined and compared with previous findings for females.Males are poorer at discriminating between songs than females; they do not display choice behavior as frequently as females, and the choices they do make are not as consistent as those of females (Figs. 3, 4). T. oceanicus calling song is composed of rhythmically different chirp and trill sections. The selectivity of males for these two components differs from that of females. Females prefer chirp to trill, but the opposite is true for males (Fig. 5B-F). Males are similar to females in that they prefer either a conspecific song model or its separate components to a heterospecific model (Fig. 5A, G, H).Behavioral and neural implications of these findings are discussed.  相似文献   

8.
Summary Abdominal flexions associated with flight steering were measured in tethered flyingTeleogryllus oceanicus stimulated with a model of conspecific calling song presented at various intensities and from many directions.Flexions increased in size with stimulus intensity until a plateau level was reached. Flexion amplitude was then approximately constant over a range of 20–30 dB, and decreased at still higher intensities (Figs. 2, 3). The shape of this intensity function results from binaural processing; in unilaterally deafened crickets flexion amplitude increased monotonically with stimulus intensity (Fig. 4).Abdominal flexions were graded with respect to sound location; they were larger for laterally placed sound sources and smaller for sound sources near the midline (Figs. 5, 6).A model for the specification of flight steering movements is presented which accounts for our findings (Fig. 7).  相似文献   

9.
The selectivity of female phonotaxis in Tettigonia cantans and T. viridissima was investigated on a Kramer treadmill, with respect to the specific differences in temporal pattern and spectrum of the songs of both species. In choice situations, both species preferred the conspecific song over the heterospecific one. The courses of both species were deflected by about 15–20° from the position of the conspecific song, that of T. viridissima being away from, that of T. cantans in the direction of the heterospecific song. In no-choice situations, song models with the temporal pattern of T. cantans did not attract T. viridissima. Models with the conspecific time pattern but heterospecific spectrum were as attractive as the conspecific model. In contrast, T. cantans was attracted by T. viridissima song presented alone. In choice situations, either spectral or temporal differences were sufficient for discrimination. The preference for the conspecific model gradually disappeared with stepwise reduction of its intensity and was reversed at −12 dB. Acoustic communication alone can serve species isolation in T. viridissima; however, premating isolation in T. cantans must involve other mechanisms. The orientation during the choice situations suggests a serial processing of song recognition and localization for the Tettigonia species. Accepted: 13 December 1997  相似文献   

10.
Summary Two ventral-cord neurons in the auditory system ofGryllus bimaculatus were studied electrophysiologically by stimulation with pulses of sound at a single frequency (sine-wave pulses), stridulatory songs, and artificial sounds constructed to imitate the conspecific songs. The sine-wave pulses were varied in frequency, sound intensity, duration, and repetition rate. The stridulatory songs were the conspecific calling, aggressive, and courtship songs and the calling songs of 8 sympatric gryllids (played back at different sound intensities). The artificial songs were varied in carrier frequency, pulse rate, chirp rate, and sound intensity.The LF1 neuron precisely duplicates the temporal structure of the conspecific calling (and aggressive) song over the whole intensity range (Figs. 7, 8, 10). It is sharply tuned to the carrier frequency of the song (5 kHz) and shows little or no response above 10 kHz and below 3 kHz (Figs. 1, 2). By variation of the calling song's temporal structure it can be demonstrated that the LF1 neuron is particularly suited to respond to the pulse duration and the pulse and chirp repetition rates of this song pattern (Figs. 6, 9).On the other hand, the HF1 neuron is a broad-band neuron with a maximal sensitivity at 16 kHz (Figs. 1, 4); it is tuned to the conspecific courtship song with respect to carrier frequency, the short pulse duration, and the very low pulse repetition rate (Figs. 6, 7, 8).The results demonstrate that the two ventral-cord neurons represent highly evolved channels of the auditory pathway in gryllids, each of which transmits important features of the corresponding conspecific songs to several areas of the brain (Fig. 11). But they are not ideal filters for these conspecific songs, since they also respond to many other sound signals (Fig. 10).Supported by the Deutsche Forschungsgemeinschaft as part of the program Sonderforschungsbereich 114 (Bionach), BochumUnder the auspices of the scientist exchange program of the Deutsche Forschungsgemeinschaft and the Academy of Sciences, USSRWe thank Prof. Dr. Schwartzkopff for his help and support; it was due to his initiative and organization that this work could be done in collaboration between the Sechenov Institute, Leningrad, and the Lehrstuhl für Allgemeine Zoologie, Ruhr University, Bochum. We are grateful to Mrs. I. Klotz and Mrs. B. Brücher for technical assistance.  相似文献   

11.
Female crickets lacking experience with phonotaxis to conspecific calling song respond to trains of continuously repeated sound pulses (trill), whereas experienced females do not. In the present study such inexperienced crickets were tested for their responsiveness to trills of pulse repetition periods from 30 to 70 ms on a Y- shaped maze. Stimulation with a repetition period of 30 ms led to unexpectedly low phonotactic and exploratory activity. Initial stimulation with trills of 30- ms repetition period drastically reduced the responsiveness of inexperienced animals to conspecific calling song and other attractive stimuli. Effects of visual stimulation on the phonotactic behavior of female crickets are demonstrated. Threatening visual stimuli changed the behavior of experienced animals to a state that resembles that of inexperienced animals. The relevance of these observations is discussed with respect to the development of the auditory pattern recognition mechanism in crickets.  相似文献   

12.
Interspecific territoriality is frequently reported between closely related species; however, few studies have demonstrated interspecific territoriality between distantly related species living in sympatry. We conducted playback experiments to investigate territorial behaviour in male and female White‐bellied Wrens (Uropsila leucogastra) in response to simulated conspecific and heterospecific intruders during the breeding and non‐breeding seasons. We explored whether heterospecific songs of the Happy Wren (Pheugopedius felix), a distantly related species and ecological competitor, elicited antagonistic responses from focal White‐bellied Wrens, and whether such responses differed between the sexes. We also examined whether male and female responses to conspecific and heterospecific rivals varied with season. We found that male White‐bellied Wrens always responded to conspecific song, and responded significantly more to heterospecific song compared to a control stimulus (Tropical Parula, Setophaga pitiayumi). In contrast, although female White‐bellied Wrens responded strongly to conspecific song, their response to heterospecific song did not differ significantly from the control stimulus. The proportion of males that responded to heterospecific songs and the proportion of females that responded to conspecific songs varied seasonally, showing significantly lower responses during the breeding season. The intense responses of male White‐bellied Wrens to playback of heterospecific songs suggest that they recognise ecological competitors based on their vocal signals. Furthermore, the decrease in agonistic interactions during the breeding season is in line with the hypothesis that aggressive behaviour may be detrimental to reproductive and parental activity, and the hypothesis that heterospecific animals pose less of a threat during the breeding season.  相似文献   

13.
Courtship vocalizations of male songbirds can profoundly enhance the reproductive physiology and behavior of conspecific females. However, no study has fully investigated the selectivity of conspecific song effects on reproductive development in birds. We studied the effects of conspecific and heterospecific song on reproductive development in domesticated (canaries) and wild songbirds (song sparrows). As expected, conspecific song enhanced follicular development. Unexpectedly, however, birds exposed to heterospecific song also underwent enhanced follicular development (compared to birds exposed to no song); conspecific and heterospecific songs were equally effective in enhancing ovarian development. In canaries exposed to 18L:6D, conspecific song induced oviposition earlier and at a greater frequency than in heterospecific and no song groups, with the fewest eggs being laid in the no song group. These results indicate that conspecific and heterospecific male song can enhance reproductive activity in female songbirds. Whether or not activation of the reproductive axis in female songbirds by heterospecific song occurs in the wild remains unclear. It is also unclear as to whether the ability of the reproductive axis to respond to heterospecific song performs a specific function, or whether it is simply a consequence of greater selection pressure acting upon behavioral responses to song.  相似文献   

14.
Are young songbirds ready to learn virtually any song, or are they predisposed to learn songs of their own species? To explore this question tests were conducted on the equipotentiality of auditory song learning stimuli in the song sparrow. 23 males reared as nestlings were exposed to tape recordings of their own and other species songs in early life and subsequent song production was analyzed for imitations. Birds exposed to natural song sparrow songs, including their fathers', and equal numbers of swamp sparrow songs, strongly preferred conspecific songs. They neither favored nor eschewed paternal songs despite having had access to them for 6–10 days as nestlings. In three other experiments synthetic songs were used in which some properties were held constant and others were systematically varied. Birds were exposed to 1–4 segmented songs varying in phrase order, tempo and syllable number, each synthesized in two versions, one from conspecific and the other from heterospecific (swamp sparrow) song syllables. With one-segmented songs (alien syntax) subjects favored conspecific over heterospecific syllable songs. Heterospecific syllables were rendered more acceptable by incorporation into two-segmented trilled songs (more song sparrow-like syntax). Heterogeneous summation of phonological and syntactical cues appeared to occur. There was also evidence of interaction between phonology and syntax. When another phrase type, the note complex, was added, in three- and four-segmented songs, a preference for conspecific syllables reappeared. Heterospecific syllables may be more readily accepted as a trilled sequence than without repetition, as in a note-complex. When phrase structure within four-segmented songs was varied, birds favored patterns most like normal conspecific song. We conclude that there are innate learning preferences in the song sparrow, based on note and syllabic structure (phonology and syllabic syntax), and temporal organization of phrases (segmental syntax), differing from those of the closely related swamp sparrow, Melospiza georgiana, in which song syntax plays no role in learning preferences.  相似文献   

15.
Interactive playback experiments were used to study the signal value to the corn bunting, Miliaria calandra, of alternating and overlapping singing. We subjected 15 males to two stimuli that differed in the temporal pattern of song playback (alternating or overlapping). We measured eight characteristics of the males’ response in two categories—song output and movements. Overlapping and alternating playback elicited a similar song response, characteristic of highly aroused males. Song response correlated positively with males’ singing activity before playback, irrespective of stimulus. There were significant differences between latency of approach to the loudspeaker and number of flights. Birds approached the loudspeaker more quickly and spent more time close to it when playback alternated with their songs. The results suggest overlapping song could be interpreted as a stronger threat but elicits a more cautious, rather than stronger, response than the alternating pattern. Males were found to shorten songs during the playback compared with songs sung before and after stimulation. The only predictor of degree of song shortening was song activity before the playback began. It should, therefore, be regarded as a signal which is related to escalated, close-distance counter-singing.  相似文献   

16.
Twelve Bengalese finches (Lonchura striata var. domestica) were trained to discriminate between a conspecific and a heterospecific song in a go/no-go operant task. Training the birds to go for the conspecifics song or to go for the heterospecific song required the same number of training sessions. Nine possible cognitive tactics could be used to solve this task, but probe tests revealed that the birds used only four. Six birds memorized only the “no-go” stimulus and responded to the rest of the stimuli (no-go memory), two birds classified songs according to the species category (open-ended categorization), one bird memorized both of the training stimuli but responded by chance to the probe stimuli (rote categorization), and two birds combined open-ended and rote categorization tactics (combined categorization). These tactics were related to the number of sessions needed to reach the species-discrimination criterion. Our results suggest that investigators should consider individual cognitive tactics and the pitfalls of go/no-go discrimination when interpreting the results of operant discrimination tasks.  相似文献   

17.
Female bushcrickets (Requena verticalis, Listroscelidinae, Tettigoniidae) show a preference between male calls that differ in three parameters, temporal structure, frequency and intensity. In a two-choice speaker situation they prefer louder calls, songs in which the upper part of the frequency spectrum occupies higher frequencies and calls with short chirps rather than those with longer chirps. In an experiment females were offered an alternative call while orienting to a model of their conspecific song. The alternative call was demonstrably preferred by females when presented in a paired-speaker trial. Two motivational states were identified where females moved slowly or quickly to a sound source. Movement patterns were associated with the form of stimulus and slow females were discriminatory of male calls while fast females were not. Slow females changed speaker preference when the alternate speaker broadcast a call model with the higher frequency peak or the song model with the shorter chirps. By comparison fast moving females only changed course when the alternative sound source was louder.  相似文献   

18.
Male field crickets are subject to a delicate dilemma becausetheir songs simultaneously attract mates and acoustic predators.It has been suggested that in response, crickets have modifiedvarious temporal song parameters to become less attractiveto acoustic predators. We investigated whether crickets withchirping (versus trilling) song structures are less likely toattract acoustically orienting parasitoid flies. Experimentally,we evaluated the phonotactic quest of the parasitoid fly Ormiaochracea in response to broadcast cricket calls, presentedboth simultaneously (choice paradigm) and sequentially (no-choiceparadigm). Flight trajectories were recorded in darkness usingthree-dimensional active infrared video tracking. The flies showed remarkable phonotactic accuracy by landing directly onthe loudspeaker. The introduction of acoustic fragmentationthat resembles calls of many chirping crickets altered theflies' phonotactic accuracy only slightly. Our results documentdifferential attraction between trilling and chirping cricket songs and quantitatively demonstrate that chirping songs, ifpresented alone, do not impair the efficiency (temporal investmentand landing accuracy) of the flies' phonotactic quest. Thisstudy shows that song fragmentation is no safeguard againstacoustic parasitism. We conclude that, in general, a cricket may reduce predation only if its neighbors are acousticallymore conspicuous, chiefly by amplitude.  相似文献   

19.
Conspicuous traits that make males attractive to females may make them vulnerable to predators. Females that approach conspicuous males may increase their risk of predation. This means that selection for reduced male conspicuousness in the presence of predators may be due to sexual selection resulting from altered female behavior in the face of increased predator risk. We examine this hypothesis in the field cricket, Gryllus rubens, in which male calling song attracts both conspecific females for mating and parasitoid flies (Ormia ochracea) which kill their hosts within a week. Female crickets are also parasitized by these flies as a result of associating with calling males. In northern Florida crickets that emerge in the spring are not subject to fly parasitism whereas autumn crickets encounter large numbers of flies. We predicted that autumn females should be less attracted to male song than spring females. We tested female response to male calls in a rectangular arena in which male calling song was broadcast from a speaker. Spring females readily approached the speaker but autumn females were less likely to approach and remain in the vicinity of the speaker. These results emphasize the importance of considering how risk affects the evolution of conspicuous male behavior both directly through its effect on the male and indirectly through its effect on female responses to males.  相似文献   

20.
Information transmission in the auditory pathway of Tettigonia viridissima was investigated using song models and artificial stimuli. Receptor cells respond tonically to song models and copy the syllable pattern within a wide intensity range. The omega-neuron responds tonically to soma-ipsilateral stimuli. Contralateral stimuli elicit IPSPs both within dendritic (ipsilateral) and axonal (contralateral) branches, thereby emphasizing directionality. Both AN1 and AN2 respond with tonic, non-adapting responses, precisely copying the syllable pattern of the song. While AN1 is excited by sonic frequencies and inhibited by ultrasonic frequencies, AN2 responds predominantly to ultrasound. The TN1 only responds to the ultrasonic components of the song, with phasic responses, which adapt quickly. In the adapted state, it responds selectively to the time pattern of the conspecific song, but not to the song patterns of two syntopic Tettigonia species. TN2, which has not been described up until now, is tuned to ultrasonic frequencies. Its responses to song models vanish after a few syllables, because of quick adaptation. The morphology is unusual with the axon running contralateral to the input site. The behavioural relevance of auditory interneurons is discussed and compared with the auditory system of crickets. Accepted: 3 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号