首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the absence of immune surveillance, Epstein-Barr virus (EBV)-infected B cells generate neoplasms in vivo and transformed cell lines in vitro. In an in vitro system which modeled the first steps of in vivo immune control over posttransplant lymphoproliferative disease and lymphomas, our investigators previously demonstrated that memory CD4(+) T cells reactive to EBV were necessary and sufficient to prevent proliferation of B cells newly infected by EBV (S. Nikiforow et al., J. Virol. 75:3740-3752, 2001). Here, we show that three CD4(+)-T-cell clones reactive to the latent EBV antigen EBNA1 also prevent the proliferation of newly infected B cells from major histocompatibility complex (MHC) class II-matched donors, a crucial first step in the transformation process. EBNA1-reactive T-cell clones recognized B cells as early as 4 days after EBV infection through an HLA-DR-restricted interaction. They secreted Th1-type and Th2-type cytokines and lysed EBV-transformed established lymphoblastoid cell lines via a Fas/Fas ligand-dependent mechanism. Once specifically activated, they also caused bystander regression and bystander killing of non-MHC-matched EBV-infected B cells. Since EBNA1 is recognized by CD4(+) T cells from nearly all EBV-seropositive individuals and evades detection by CD8(+) T cells, EBNA1-reactive CD4(+) T cells may control de novo expansion of B cells following EBV infection in vivo. Thus, EBNA1-reactive CD4(+)-T-cell clones may find use as adoptive immunotherapy against EBV-related lymphoproliferative disease and many other EBV-associated tumors.  相似文献   

2.
T-cell memory to Epstein-Barr virus (EBV) was first demonstrated through regression of EBV-induced B-cell transformation to lymphoblastoid cell lines (LCLs) in virus-infected peripheral blood mononuclear cell (PBMC) cultures. Here, using donors with virus-specific T-cell memory to well-defined CD4 and CD8 epitopes, we reexamine recent reports that the effector cells mediating regression are EBV latent antigen-specific CD4+ and not, as previously assumed, CD8+ T cells. In regressing cultures, we find that the reversal of CD23+ B-cell proliferation was always coincident with an expansion of latent epitope-specific CD8+, but not CD4+, T cells; furthermore CD8+ T-cell clones derived from regressing cultures were epitope specific and reproduced regression when cocultivated with EBV-infected autologous B cells. In cultures of CD4-depleted PBMCs, there was less efficient expansion of these epitope-specific CD8+ T cells and correspondingly weaker regression. The data are consistent with an effector role for epitope-specific CD8+ T cells in regression and an auxiliary role for CD4+ T cells in expanding the CD8 response. However, we also occasionally observed late regression in CD8-depleted PBMC cultures, though again without any detectable expansion of preexisting epitope-specific CD4+ T-cell memory. CD4+ T-cell clones derived from such cultures were LCL specific in gamma interferon release assays but did not recognize any known EBV latent cycle protein or derived peptide. A subset of these clones was also cytolytic and could block LCL outgrowth. These novel effectors, whose antigen specificity remains to be determined, may also play a role in limiting virus-induced B-cell proliferation in vitro and in vivo.  相似文献   

3.
Sinomenine inhibits primary CD4+ T-cell proliferation via apoptosis   总被引:2,自引:0,他引:2  
Sinomenine is an active component isolated from Sinomenium acutum and is widely used as an immunosuppressive drug for treating autoimmune diseases. CD4(+) T-cell population plays a key role in adaptive immune response and is related to some autoimmune diseases. In this study, we investigated the possible immunosuppressive effect of sinomenine on CD4(+) T cells and its underlying mechanism. Our data demonstrated that sinomenine remarkably suppressed the proliferation of CD4(+) T cells, blocked the cell cycle progression from G0/G1 phase to S plusG2/M phases. Finally, the immunosuppressive activity elicited by sinomenine in CD4(+) primary lymphocytes was found to be largely accounted for by caspase 3-dependent cells apoptosis. Sinomenine did not significantly alter the expression of bcl-2 in activated CD4(+) primary T cells, suggesting that bcl-2 might not be involved in sinomenine-induced T cells apoptosis. In sum, this study proposes a novel mechanism for the immunosuppressive function of sinomenine on primary mouse CD4(+) T cells.  相似文献   

4.
5.
Background aimsMesenchymal stromal cells (MSC) derived from bone marrow are immunosuppressive in vitro and in vivo. Recent evidence, however, has shown that in certain settings, MSC can also be immunostimulatory. The mechanisms involved in this process are largely unknown.MethodsMouse spleen T cells were stimulated with allogeneic mixed lymphocyte reaction (MLR) or anti-CD3/CD28 beads and treated with autologous bone marrow MSC or MSC-conditioned medium. CD4+ and CD8+ T-cell proliferation was analyzed after treatment.ResultsWe show that MSC have both suppressive and stimulatory functions toward T cells after stimulation with anti-CD3/CD28 beads or in an MLR. This depended on the ratio of MSC to responder T cells, with low numbers of MSC increasing and higher numbers inhibiting T-cell proliferation. Immunostimulatory function was mediated, in part, by soluble factors. MSC immunosuppression of the MLR was indirect and related to inhibition of antigen-presenting cell maturation. Direct effects of MSC-conditioned medium during anti-CD3/CD28 stimulated proliferation were entirely stimulatory and required the presence of the T-cell receptor. MSC supernatant contained both CCL2 and CCL5 at high levels, but only CCL2 level correlated with the ability to augment proliferation. An anti-CCL2 antibody blocked this proliferative activity.ConclusionsCCL2 plays an important role in the immunostimulatory function of MSC, and we further hypothesize that the immunomodulatory role of MSC is determined by a balance between inhibitory and stimulatory factors, suggesting the need for caution when these cells are investigated in clinical protocols.  相似文献   

6.
Direct addition of the T-cell mitogen, concanavalin A (Con A), to cultures of Epstein-Barr virus (EBV)-stimulated peripheral blood mononuclear cells (PBMC) resulted in a dose-dependent inhibition of immunoglobulin M (IgM) secreted in the supernatant, as measured by an enzyme-linked immunosorbent assay. Furthermore, Con A inhibited IgM secretion of isolated T-depleted cells stimulated with EBV, and both the proliferation and IgM secretion of EBV-driven lymphoblastoid cell lines. T-Enriched cells, precultured for 48 hr with Con A, were also able to suppress the IgM response of fresh autologous PBMC stimulated with EBV. This suppression was radiation sensitive (2000 rad), a procedure which resulted in enhancement of the IgM secretion of the responder cells in two out of three experiments. Studies on the long-term effects of Con A showed that the early suppression of IgM secretion was transient and that the mitogen prevented the development of the cytotoxic T-cell response normally seen with lymphocytes from EBV-seropositive donors after 5 weeks of culture. Thus, Con A appears to modulate human lymphocyte responses to EBV by multiple mechanisms.  相似文献   

7.
BACKGROUND: Interleukin-2 (IL-2) has been used successfully to increase CD4 cell counts in patients who are human immunodeficiency virus (HIV) positive. The mechanisms involved in this phenomenon are unknown. We hypothesized that a differential proliferation rate of CD4+ compared with CD8+ lymphocytes could be related to the increase of CD4 counts and of CD4/CD8 ratios that occur in HIV+ patients during IL-2 treatment. METHODS: We enrolled in our study 14 HIV+ patients treated with IL-2 or with highly active antiretroviral therapy (HAART) during a 96-week observation period. Using flow cytometry, we measured longitudinally the expression of the Ki67 antigen in peripheral blood CD4+ and CD8+ lymphocyte subsets. RESULTS: Compared with HAART alone, IL-2 produced a rapid increase of Ki67+ proliferating CD4 cells and a concomitant increase of the CD4/CD8 ratios, whereas the corresponding CD8 proliferation increased slightly. On the contrary, HAART alone was effective in suppressing equally both CD4 and CD8 proliferation. CONCLUSIONS: Our results suggest a selective activity of IL-2 on CD4 T-cell proliferation; on the contrary, CD8-specific proliferation is affected minimally during treatment. This information may offer the potential to plan correctly immune activating regimens.  相似文献   

8.
Immune function in the elderly is associated with a number of phenotypic and functional abnormalities, and this phenomenon of immune senescence is associated with increased susceptibility to infection. The immune response to pathogens frequently declines with age, but the CD8(+) T-cell response to cytomegalovirus (CMV) is unusual, as it demonstrates a significant expansion over time. Here we have documented the CD4(+) T-cell immune response to CMV in healthy donors of different ages. The magnitude of the CMV-specific CD4(+) T-cell immune response increases from a mean of 2.2% of the CD4(+) T-cell pool in donors below 50 years of age to 4.7% in donors aged over 65 years. In addition, CMV-specific CD4(+) T cells in elderly donors demonstrate decreased production of interleukin-2 and less dependence on costimulation. CMV seropositivity is associated with marked changes in the phenotype of the overall CD4(+) T-cell repertoire in healthy aged donors, including an increase in CD57(+) expression and a decrease in CD28 and CD27 expression, a phenotypic profile characteristic of immune senescence. This memory inflation of CMV-specific CD4(+) T cells contributes to evidence that CMV infection may be damaging to immune function in elderly individuals.  相似文献   

9.
Regulatory CD4(+)CD25(+)Foxp3(+) T cells play a critical role in controlling autoimmunity and T cell homeostasis. However, their role in regulation of lymphopenia-induced proliferation (LIP), a potential mechanism for generation of autoaggressive T cells, has been poorly defined. Currently, two forms of LIP are recognized: spontaneous and homeostatic. Spontaneous LIP is characterized by fast, burst-like cell-cycle activity, and may allow effector T cell differentiation. Homeostatic LIP is characterized by slow and steady cell cycle activity and is not associated with the acquisition of an effector phenotype. In this study, we demonstrate that CD4(+)CD25(+)Foxp3(+) T cells suppress the spontaneous, but not homeostatic, LIP of naive CD8 and CD4 T cells. However, selective inhibition of spontaneous LIP does not fully explain the tolerogenic role of Tregs in lymphopenia-associated autoimmunity. We show here that suppression of LIP in the lymphoid tissues is independent of Treg-derived IL-10. However, IL-10-deficient Tregs are partially defective in their ability to prevent colitis caused by adoptive transfer of CD4 T cells into RAG(-/-) mice. We propose that Tregs may inhibit emergence of effector T cells during the inductive phase of the immune response in the secondary lymphoid tissues by IL-10-independent mechanisms. In contrast, Treg-mediated inhibition of established effector T cells does require IL-10. Both Treg functions appear to be important in control of lymphopenia-associated autoimmunity.  相似文献   

10.
11.
Directing both innate and adaptive immune responses against foreign pathogens with correct timing, location and specificity is a fundamental objective for the immune system. Full activation of CD4+ T cells requires the binding of peptide-MHC complexes coupled with accessory signals provided by the antigen-presenting cell. However, aberrant activation of the T-cell receptor alone in mature T cells can produce a long-lived state of functional unresponsiveness, known as anergy. Recent studies probing both immune signalling pathways and the ubiquitin-proteasome system have helped to refine and elaborate current models for the molecular mechanisms underlying T-cell anergy. Controlling anergy induction and maintenance will be a key component in the future to mitigate unwanted T-cell activation that leads to autoimmune disease.  相似文献   

12.
Epstein-Barr virus (EBV) transformation of B cells from fetal cord blood in vitro varies depending on the individual sample. When a single preparation of EBV was simultaneously used to transform fetal cord blood samples from six different individuals, the virus transformation titer varied from less than zero to 10(5.9). We show that this variation in EBV transformation is associated with a marked primary immune response in cord blood samples predominately involving CD4(+) T cells and CD16(+) CD56(+) NK cells. After virus challenge both CD4(+) T cells and NK cells in fetal cord blood cultures expressed the lymphocyte activation marker CD69. The cytotoxic response against autologous EBV-infected lymphoblastoid cell line (LCL) targets correlated with the number of CD16(+) CD69(+) cells and was inversely correlated with the virus transformation titer. Although NK activity was detected in fresh cord blood and increased following activation by the virus, killing of autologous LCLs was detected only following activation by exposure to the virus. Both activated CD4(+) T cells and CD16(+) NK cells were independently able to kill autologous LCLs. Both interleukin-2 and gamma interferon were produced by CD4(+) T cells after virus challenge. The titer of EBV was lower when purified B cells were used than when whole cord blood was used. Addition of monocytes restored the virus titer, while addition of resting T cells or EBV-activated CD4(+) T-cell blasts reduced the virus titer. We conclude that there are primary NK-cell and Th1-type CD4(+) T-cell responses to EBV in fetal cord blood that limit the expansion of EBV-infected cells and in some cases eliminate virus infection in vitro.  相似文献   

13.
CD4+ T-cell help enables antiviral CD8+ T cells to differentiate into fully competent memory cells and sustains CD8+ T-cell-mediated immunity during persistent virus infection. We recently reported that mice of C57BL/6 and C3H strains differ in their dependence on CD28 and CD40L costimulation for long-term control of infection by polyoma virus, a persistent mouse pathogen. In this study, we asked whether mice of these inbred strains also vary in their requirement for CD4+ T-cell help for generating and maintaining polyoma virus-specific CD8+ T cells. CD4+ T-cell-depleted C57BL/6 mice mounted a robust antiviral CD8+ T-cell response during acute infection, whereas unhelped CD8+ T-cell effectors in C3H mice were functionally impaired during acute infection and failed to expand upon antigenic challenge during persistent infection. Using (C57BL/6 × C3H)F1 mice, we found that the dispensability for CD4+ T-cell help for the H-2b-restricted polyoma virus-specific CD8+ T-cell response during acute infection extends to the H-2k-restricted antiviral CD8+ T cells. Our findings demonstrate that dependence on CD4+ T-cell help for antiviral CD8+ T-cell effector differentiation can vary among allogeneic strains of inbred mice.  相似文献   

14.
15.
Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a systematic analysis of CD4+ T-cell epitopes within gp340 possible; it will be necessary to screen gp340-specific T-cell clones from a variety of donors to assess the wider influence of HLA class II polymorphism upon epitope choice.  相似文献   

16.
In this study we examined the role and regulation of OX40 signals during CD4 T cell priming on dendritic cells (DCs). Contrary to expectation, OX40-deficient cells proliferated more rapidly than their normal counterparts, particularly when stimulated with peptide in the absence of added cytokines. This proliferative advantage was not apparent for Th2-differentiated cells. When the reasons for this were investigated, we found that the cytokine IL-4 specifically down-regulated expression of OX40 ligand on T, B, and DCs, but not on the CD4(+)CD3(-) cells linked with selection of Th2 cells into the memory compartment. OX40 ligand expression was also down-regulated on rapidly proliferating Th1 effectors. These data are compatible with OX40 signals acting during priming as a check on naive T cell proliferation while T cells integrate additional DC signals. This would serve to limit inappropriate T cell responses. In contrast, OX40 signals from CD4(+)CD3(-) cells located in the outer T zone select proliferating Th2 effectors into the memory T cell pool.  相似文献   

17.
DNA delivery of tumor antigens can activate specific immune attack on cancer cells. However, antigens may be weak, and immune capacity can be compromised. Fusion of genes encoding activating sequences to the tumor antigen sequence facilitates promotion and manipulation of effector pathways. Idiotypic determinants of B-cell tumors, encoded by the variable region genes, are clone-specific tumor antigens. When assembled as single-chain Fv (scFv) alone in a DNA vaccine, immunogenicity is low. Previously, we found that fusion of a sequence from tetanus toxin (fragment C; FrC) promoted anti-idiotypic protection against lymphoma and myeloma. We have now investigated an alternative fusion gene derived from a plant virus, potato virus X coat protein, a primary antigen in humans. When fused to scFv, the self-aggregating protein generates protection against lymphoma and myeloma. In contrast to scFv-FrC, protection against lymphoma is mediated by CD4+ T cells, as is protection against myeloma. Plant viral proteins offer new opportunities to activate immunity against linked T-cell epitopes to attack cancer.  相似文献   

18.
Emerging evidence indicates that CD8+ and CD4+ T-cell immunity is differentially regulated. Here we have delineated differences and commonalities among antiviral T-cell responses by enumeration and functional profiling of eight specific CD8+ and CD4+ T-cell populations during primary, memory and recall responses. A high degree of coordinate regulation among all specific T-cell populations stood out against an approximately 20-fold lower peak expansion and prolonged contraction phase of specific CD4+ T-cell populations. Surprisingly, although CD8+ T-cell memory was stably maintained for life, levels of specific CD4+ memory T cells gradually declined. However, this decay, which seemed to result from less efficient rescue from apoptosis, did not affect functionality of surviving virus-specific CD4+ T cells. Our results indicate that CD4+ T-cell memory might become limiting under physiological conditions and that conditions precipitating CD4+ T-cell loss might compromise protective immunity even in the presence of unimpaired CD8+ T-cell responses.  相似文献   

19.
Autophagy is a homeostatic process that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses to intracellular pathogens. Autophagy restricts viral infections as well as replication of intracellular bacteria and parasites and delivers pathogenic determinants for TLR stimulation and for MHC class II presentation to the adaptive immune system. Apart from its role in defense against pathogens, autophagy-mediated presentation of self-antigens in the steady state could have a crucial role in the induction and maintenance of CD4(+) T-cell tolerance. This review describes the mechanisms by which the immune system utilizes autophagic degradation of cytoplasmic material to regulate adaptive immune responses.  相似文献   

20.
We have examined factors governing the negative selection of autoreactive CD4(+) T cells in transgenic mice expressing low (HA12 mice) vs. high (HA104 mice) amounts of the influenza virus hemagglutinin (HA). When mated with TS1 mice that express a transgenic TCR specific for the I-Ed-restricted determinant site 1 (S1) of HA, thymocytes expressing high levels of the clonotypic TCR were deleted in both HA-transgenic lineages. However, through allelic inclusion, thymocytes with lower levels of the clonotypic TCR evaded deletion in TS1 x HA12 and TS1 x HA104 mice to graded degrees. Moreover, in both lineages, peripheral CD4(+) T cells could be activated by the S1 peptide in vitro, and by influenza virus in vivo. These findings indicate that allelic inclusion can allow autoreactive CD4(+) thymocytes to evade thymic deletion to varying extents reflecting variation in the expression of the self peptide, and can provide a basis for the activation of autoreactive peripheral T cells by viruses bearing homologues of self peptides ("molecular mimicry").  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号