首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jak tyrosine kinases have a unique domain structure containing a kinase domain (JH1) adjacent to a catalytically inactive pseudokinase domain (JH2). JH2 is crucial for inhibition of basal Jak activity, but the mechanism of this regulation has remained elusive. We show that JH2 negatively regulated Jak2 in bacterial cells, indicating that regulation is an intrinsic property of Jak2. JH2 suppressed basal Jak2 activity by lowering the V(max) of Jak2, whereas JH2 did not affect the K(m) of Jak2 for a peptide substrate. Three inhibitory regions (IR1-3) within JH2 were identified. IR3 (residues 758-807), at the C terminus of JH2, directly inhibited JH1, suggesting an inhibitory interaction between IR3 and JH1. Molecular modeling of JH2 showed that IR3 could form a stable alpha-helical fold, supporting that IR3 could independently inhibit JH1. IR2 (725-757) in the C-terminal lobe of JH2, and IR1 (619-670), extending from the N-terminal to the C-terminal lobe, enhanced IR3-mediated inhibition of JH1. Disruption of IR3 either by mutations or a small deletion increased basal Jak2 activity, but abolished interferon-gamma-inducible signaling. Together, the results provide evidence for autoinhibition of a Jak family kinase and identify JH2 regions important for autoregulation of Jak2.  相似文献   

3.
Jak2 is a member of the Janus family of tyrosine kinases and is involved in cytokine signaling. As a part of a study to determine biological functions of Jak2, we used molecular modeling to identify W1038 as a residue that is critical for tyrosine kinase function. Mutation of W1038, in tandem with E1046, generates a dominant-negative form of the Jak2 protein. Mice that were engineered to express two copies of this dominant-negative Jak2 protein died in utero. Additionally, heterozygous mice expressing Jak2 with kinase activity that is moderately reduced when compared to wild-type activity appear phenotypically normal. Collectively, these data suggest that Jak2 kinase activity is essential for normal mammalian development.  相似文献   

4.
5.
6.
7.
Interleukin-2 (IL-2) activates several different families of tyrosine kinases, but precisely how these kinases interact is not completely understood. We therefore investigated the functional relationships among Jak3, Lck, and Syk in IL-2 signaling. We first observed that in the absence of Jak3, both Lck and Syk had the capacity to phosphorylate Stat3 and Stat5a. However, neither supported IL-2-induced STAT activation, nor did dominant negative alleles of these kinases inhibit. Moreover, pharmacological abrogation of Lck activity did not inhibit IL-2-mediated phosphorylation of Jak3 and Stat5a. Importantly, ligand-dependent Syk activation was dependent on the presence of catalytically active Jak3, whereas Lck activation was not. Interestingly, Syk functioned as a direct substrate of Jak1 but not Jak3. Additionally, Jak3 phosphorylated Jak1, whereas the reverse was not the case. Taken together, our data support a model in which Lck functions in parallel with Jak3, while Syk functions as a downstream element of Jaks in IL-2 signaling. Jak3 may regulate Syk catalytic activity indirectly via Jak1. However, IL-2-mediated Jak3/Stat activation is not dependent on Lck or Syk. While the essential roles of Jak1 and Jak3 in signaling by gammac-utilizing cytokines are clear, it will be important to dissect the exact contributions of Lck and Syk in mediating the effects of IL-2 and related cytokines.  相似文献   

8.
9.
The Src family of tyrosine protein kinases represent an expanding class of closely related intracellular enzymes that participate in the signal transduction pathways of a variety of surface receptors. One of the more surprising aspects of the information relating Src protein kinases to receptor signaling is the apparent diversity of receptor types with which the Src-related enzymes are reported to interact physically or functionally. Traditional biochemical and genetic approaches have yielded much information regarding the interactions between the Src tyrosine protein kinases and other cellular proteins in defined cell types, and emerging technologies, most notably homologous recombination in embryonal stem cells to achieve gene "knockouts," are providing new insights into the participation of the Src-related gene products in signal transduction and development.  相似文献   

10.
11.
Signaling by the Epidermal Growth Factor Receptor (EGFR) and related ErbB family receptor tyrosine kinases can be deregulated in human malignancies as the result of mutations in the genes that encode these receptors. The recent identification of EGFR mutations that correlate with sensitivity and resistance to EGFR tyrosine kinase inhibitors in lung and colon tumors has renewed interest in such activating mutations. Here we review current models for ligand stimulation of receptor dimerization and for activation of receptor signaling by receptor dimerization. In the context of these models, we discuss ErbB receptor mutations that affect ligand binding and those that cause constitutive receptor phosphorylation and signaling as a result of constitutive receptor dimerization. We discuss mutations in the cytoplasmic regions that affect enzymatic activity, substrate specificity and coupling to effectors and downstream signaling pathways. Finally, we discuss how emergent mechanisms of ErbB receptor mutational activation could impact the search for clinically relevant ErbB receptor mutations.  相似文献   

12.
13.
Binding of interleukin-2 (IL-2) to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2 receptor (IL-2R)-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling.  相似文献   

14.
Protein tyrosine kinases play key roles in many molecular and cellular processes in diverse living organisms. Their proper functioning is crucial for the normal growth, development, and health in humans, whereas their dysfunction can cause serious diseases, including various cancers. As such, intense studies have been performed to understand the molecular mechanisms by which the activities of protein tyrosine kinases are regulated in mammalian cells. Particularly, small molecules that can modulate the activity of tyrosine kinases are of great importance for discovering therapeutic drug candidates for numerous diseases. Notably, heme cannot only serve as a prosthetic group for hemoglobins and enzymes, but it also is a small signaling molecule that can control the activity of diverse signaling and regulatory proteins. Using a computational search, we found that a group of non-membrane spanning tyrosine kinases contains one or more CP motifs that can potentially bind to heme and mediate heme regulation. We then used experimental approaches to determine whether heme can affect the activity of any of these tyrosine kinases. We found that heme indeed affects the phosphorylation of key tyrosine residues in Jak2 and Src, and is therefore able to modulate Jak2 and Src activity. Further experiments showed that Jak2 and Src bind to heme and that the presence of heme alters the sensitivity of Jak2 and Src to trypsin digestion. These results suggest that heme actively interacts with Jak2 and Src and alters their conformation.  相似文献   

15.
Recent work with interleukins has shown a convergence of tyrosine phosphorylation signal transduction cascades at the level of the Janus and Src families of tyrosine kinases. Here we demonstrate that activation of the seven-transmembrane AT(1) receptor by angiotensin II induces a physical association between Jak2 and Fyn, in vivo. This association requires the catalytic activity of Jak2 but not Fyn. Deletion studies indicate that the region of Jak2 that binds Fyn is located between amino acids 1 and 240. Studies of the Fyn SH2 and SH3 domains demonstrate that the SH2 domain plays the primary role in Jak2/Fyn association. Not surprisingly, this domain shows a marked preference for tyrosine-phosphorylated Jak2. Surface plasmon resonance estimated the dissociation equilibrium constant (K(d)) of this association to be 2.36 nM. Last, in vivo studies in vascular smooth muscle cells show that, in response to angiotensin II, Jak2 activation is required for Fyn activation and induction of the c-fos gene. The significance of these data is that Jak2, in addition to serving as a critical angiotensin II activated signal transduction kinase, also functions as a docking protein and participates in the activation of Fyn by providing phosphotyrosine residues that bind the SH2 domain of Fyn.  相似文献   

16.
Insulin-like growth factor I (IGF-I), a growth hormone (GH)-dependent growth factor exerts feedback regulation of GH by inhibiting GH gene expression. IGF-I inhibition of GH secretion is enhanced 3-5-fold in GC rat pituitary cells overexpressing the wild type 950Tyr human IGF-I receptor which autophosphorylates appropriately. To determine the critical amino acid sequence responsible for IGF-I signaling, insertion, deletion, and site-directed mutants were constructed to substitute for 950Tyr in exon 16 of the human IGF-I receptor beta-subunit transmembrane domain. All mutant transfectants bound IGF-I with a similar Kd to untransfected cells but had markedly increased (7-34-fold) IGF-I-binding sites. GH responsiveness to IGF-I was tested in mutant transfectants. Overexpressed site-directed and insertion mutant IGF-I receptors exhibited a modest suppressive effect on GH in response to the IGF-I ligand, similar to that observed in untransfected cells. Deletion mutant (IG-FIR delta 22) (amino acid 944-965) did not transduce the IGF-I signal to the GH gene. Site-directed and insertion mutants therefore did not enhance the IGF-I response of the endogenous rat receptor, unlike the 950Tyr wild type transfectants which enhanced the IGF-I signal. All mutant transfectants, except the deletion mutant, internalized radioactive ligand similarly to 950Tyr wild type transfectants. 950Tyr of the human IGF-I receptor is therefore required for IGF-I signal transduction in the pituitary somatotroph, but not for IGF-I-mediated internalization.  相似文献   

17.
McDoom I  Ma X  Kirabo A  Lee KY  Ostrov DA  Sayeski PP 《Biochemistry》2008,47(32):8326-8334
Jak2 is a 130 kDa tyrosine kinase that is important in a number of cellular signaling pathways. Its function is intrinsically regulated by the phosphorylation of a handful of its 49 tyrosines. Here, we report that tyrosine 972 (Y972) is a novel site of Jak2 phosphorylation and, hence, autoregulation. Specifically, we found that Y972 is phosphorylated and confirmed that this residue resides on the surface of the protein. Using expression plasmids that expressed either wild-type Jak2 or a full-length Jak2 cDNA containing a single Y972F substitution mutation, we investigated the consequences of losing Y972 phosphorylation on Jak2 function. We determined that the loss of Y972 phosphorylation significantly reduced the levels of both Jak2 total tyrosine phosphorylation and phosphorylation of Y1007/Y1008. Additionally, Y972 phosphorylation was shown to be important for maximal kinase function. Interestingly, in response to classical cytokine activation, the Jak2 Y972F mutant exhibited a moderately impaired level of activation when compared to the wild-type protein. However, when Jak2 was activated via a GPCR ligand, the ability of the Y972F mutant to be activated was completely lost, therefore suggesting a differential role of Y972 in Jak2 activation. Finally, we found that phosphorylation of Y972 enhances Jak2 kinase function via a mechanism that appears to stabilize the active conformation of the protein. Collectively, our results suggest that Y972 is a novel site of Jak2 phosphorylation and plays an important differential role in ligand-dependent Jak2 activation via a mechanism that involves stabilization of the Jak2 active conformation.  相似文献   

18.
The adapter protein Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is critical for multiple aspects of T cell development and function. Through its protein-binding domains, SLP-76 serves as a platform for the assembly of multiple enzymes and adapter proteins that function together to activate second messengers required for TCR signal propagation. The N terminus of SLP-76, which contains three tyrosines that serve as docking sites for SH2 domain-containing proteins, and the central proline-rich region of SLP-76 have been well studied and are known to be important for both thymocyte selection and activation of peripheral T cells. Less is known about the function of the C-terminal SH2 domain of SLP-76. This region inducibly associates with ADAP and HPK1. Combining regulated deletion of endogenous SLP-76 with transgenic expression of a SLP-76 SH2 domain mutant, we demonstrate that the SLP-76 SH2 domain is required for peripheral T cell activation and positive selection of thymocytes, a function not previously attributed to this region. This domain is also important for T cell proliferation, IL-2 production, and phosphorylation of protein kinase D and IκB. ADAP-deficient T cells display similar, but in some cases less severe, defects despite phosphorylation of a negative regulatory site on SLP-76 by HPK1, a function that is lost in SLP-76 SH2 domain mutant T cells.  相似文献   

19.
20.
Janus kinases comprise carboxyterminal kinase, pseudokinase, SH2-like, and N-terminal FERM domains. We identified three patient-derived mutations in the FERM domain of Jak3 and investigated the functional consequences of these mutations. These mutations inhibited receptor binding and also abrogated kinase activity, suggesting interactions between the FERM and kinase domains. In fact, the domains were found to physically associate, and coexpression of the FERM domain enhanced activity of the isolated kinase domain. Conversely, staurosporine, which alters kinase domain structure, disrupted receptor binding, even though the catalytic activity of Jak3 is dispensable for receptor binding. Thus, the Jak FERM domain appears to have two critical functions: receptor interaction and maintenance of kinase integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号