首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
ATP-binding cassette transporters ABCG5 (G5) and ABCG8 (G8) form a heterodimer that transports cholesterol and plant sterols from hepatocytes into bile. Mutations that inactivate G5 or G8 cause hypercholesterolemia and premature atherosclerosis. We showed previously that the two nucleotide-binding domains (NBDs) in the heterodimer are not functionally equivalent; sterol transport is abolished by mutations in the consensus residues of NBD2 but not of NBD1. Here, we examined the structural requirements of NBD1 for sterol transport. Substitutions of the D-loop aspartate and Q-loop glutamine in either NBD did not impair sterol transport. The H-loop histidine of NBD2 (but not NBD1) was required for sterol transport. Exchange of the signature motifs between the NBDs did not interfere with sterol transport, whereas swapping the Walker A, Walker B, and signature motifs together resulted in failure to transport sterols. Selected substitutions within NBD1 altered substrate specificity: transport of plant sterols by the heterodimer was preserved, whereas transport of cholesterol was abolished. In summary, these data indicate that NBD1, although not required for ATP hydrolysis, is essential for normal function of G5G8 in sterol transport. Both the position and structural integrity of NBD2 are essential for sterol transport activity.  相似文献   

2.
Selective sterol accumulation in ABCG5/ABCG8-deficient mice   总被引:8,自引:0,他引:8  
The ATP binding cassette (ABC) transporters ABCG5 and ABCG8 limit intestinal absorption and promote biliary secretion of neutral sterols. Mutations in either gene cause sitosterolemia, a rare recessive disease in which plasma and tissue levels of several neutral sterols are increased to varying degrees. To determine why patients with sitosterolemia preferentially accumulate noncholesterol sterols, levels of cholesterol and the major plant sterols were compared in plasma, liver, bile, and brain of wild-type and ABCG5/ABCG8-deficient (G5G8(-/-)) mice. The total sterol content of liver and plasma was similar in G5G8(-/-) mice and wild-type animals despite an approximately 30-fold increase in noncholesterol sterol levels in the knockout animals. The relative enrichment of each sterol in the plasma and liver of G5G8(-/-) mice (stigmasterol > sitosterol = cholestanol > bassicasterol > campesterol > cholesterol) reflected its relative enrichment in the bile of wild-type mice. These results indicate that 24-alkylated, Delta22, and 5alpha-reduced sterols are preferentially secreted into bile and that preferential biliary secretion of noncholesterol sterols by ABCG5 and ABCG8 prevents the accumulation of these sterols in normal animals. The mRNA levels for 13 enzymes in the cholesterol biosynthetic pathway were reduced in the livers of the G5G8(-/-) mice, despite a 50% reduction in hepatic cholesterol level. Thus, the accumulation of sterols other than cholesterol is sensed by the cholesterol regulatory machinery.  相似文献   

3.
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.  相似文献   

4.
ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile   总被引:1,自引:0,他引:1  
The major pathway for the removal of cholesterol from the body is via secretion into the bile. Three members of the ATP binding cassette (ABC) family, ABCG5 (G5), ABCG8 (G8), and ABCB4 (MDR2), are required for the efficient biliary export of sterols. Here, we examined the interdependence of these three ABC transporters for biliary sterol secretion. Biliary lipid levels in mice expressing no MDR2 (Mdr2-/- mice) were compared with those of Mdr2-/- mice expressing 14 copies of a human G5 (hG5) and hG8 transgene (Mdr2-/-;hG5G8Tg mice). Mdr2-/- mice had only trace amounts of biliary cholesterol and phospholipids. The Mdr2-/-;hG5G8Tg mice had biliary cholesterol levels as low as those of Mdr2-/- mice. Thus, MDR2 expression is required for G5G8-mediated biliary sterol secretion. To determine whether the reduction in fractional absorption of dietary sterols associated with G5G8 overexpression is secondary to the associated increase in biliary cholesterol, we compared the fractional absorption of sterols in Mdr2-/-;hG5G8Tg and hG5G8Tg animals. Inactivation of MDR2 markedly attenuated the reduction in fractional sterol absorption associated with G5G8 overexpression. These results are consistent with the notion that increased biliary cholesterol secretion contributes to the reduction in fractional sterol absorption associated with G5G8 overexpression.  相似文献   

5.
Ezetimibe normalizes metabolic defects in mice lacking ABCG5 and ABCG8   总被引:3,自引:0,他引:3  
The ATP binding cassette transporters ABCG5 (G5) and ABCG8 (G8) limit the accumulation of neutral sterols by restricting sterol uptake from the intestine and promoting sterol excretion into bile. Humans and mice lacking G5 and G8 (G5G8-/-) accumulate plant sterols in the blood and tissues. However, despite impaired biliary cholesterol secretion, plasma and liver cholesterol levels are lower in G5G8-/- mice than in wild-type littermates. To determine whether the observed changes in hepatic sterol metabolism were a direct result of decreased biliary sterol secretion or a metabolic consequence of the accumulation of dietary noncholesterol sterols, we treated G5G8-/- mice with ezetimibe, a drug that reduces the absorption of both plant- and animal-derived sterols. Ezetimibe feeding for 1 month sharply decreased sterol absorption and plasma levels of sitosterol and campesterol but increased cholesterol in both the plasma (from 60.4 to 75.2 mg/dl) and the liver (from 1.1 to 1.87 mg/g) of the ezetimibe-treated G5G8-/- mice. Paradoxically, the increase in hepatic cholesterol was associated with an increase in mRNA levels of HMG-CoA reductase and synthase. Together, these results indicate that pharmacological blockade of sterol absorption can ameliorate the deleterious metabolic effects of plant sterols even in the absence of G5 and G8.  相似文献   

6.
Wang J  Zhang DW  Lei Y  Xu F  Cohen JC  Hobbs HH  Xie XS 《Biochemistry》2008,47(18):5194-5204
ABCG5 (G5) and ABCG8 (G8) are ATP-binding cassette half-transporters that limit intestinal uptake and promote biliary secretion of neutral sterols. Here, we describe the purification of endogenous G5G8 from mouse liver to near homogeneity. We incorporated the native proteins into membrane vesicles and reconstituted sterol transfer. Native gel electrophoresis, density-gradient ultracentrifugation, and chemical cross-linking studies indicated that the functional native complex is a heterodimer. No higher order oligomeric forms were observed at any stage in the catalytic cycle. Sterol transfer activity by purified native G5G8 was stable, stereospecific, and selective. We also report that G5 but not G8 is S-palmitoylated and that palmitoylation is not essential for dimerization, trafficking, or biliary sterol secretion. Both G5 and G8 have short but highly conserved cytoplasmic tails. The functional roles of these C-terminal regions were examined using an in vivo functional assay.  相似文献   

7.
ABCG5 (G5) and ABCG8 (G8) are ATP-binding cassette (ABC) transporters that limit intestinal absorption and promote biliary excretion of neutral sterols. Mutations in either ABCG5 or ABCG8 result in an identical clinical phenotype, suggesting that these two half-transporters function as heterodimers. Expression of both G5 and G8 is required for either protein to be transported to the plasma membrane of cultured cells. In this paper we used immunofluorescence microscopy to confirm, in vivo, that G5 is localized to the apical membranes of mouse enterocytes and hepatocytes. Other ABC half-transporters function as homodimers or as heterodimers with other subfamily members. To determine whether G5 or G8 complex with other ABCG half-transporters, we co-expressed G1, G2, and G4 with either G5 or G8 in cultured cells. G1, G2, and G4 co-immunoprecipitated with G5, and G4 co-immunoprecipitated with G8, but the putative dimers were retained in the endoplasmic reticulum (ER). Adenovirus-mediated expression of either G5 or G8 in the liver of G5G8 null mice resulted in ER retention of the expressed proteins and no increase in biliary cholesterol. In contrast, co-expression of G5 and G8 resulted in transit of the proteins out of the ER and a 10-fold increase in biliary cholesterol concentration. Finally, adenoviral expression of G2 in the presence or absence of G5 or G8 failed to promote sterol excretion into bile. These experiments indicate that G5 and G8 function as obligate heterodimers to promote sterol excretion into bile.  相似文献   

8.
9.
Mutations in ABCG5 (G5) or ABCG8 (G8) cause sitosterolemia, an autosomal recessive disease characterized by sterol accumulation and premature atherosclerosis. G5 and G8 are ATP-binding cassette (ABC) half-transporters that must heterodimerize to move to the apical surface of cells. We examined the role of N-linked glycans in the formation of the G5/G8 heterodimer to gain insight into the determinants of folding and trafficking of these proteins. Site-directed mutagenesis revealed that two asparagine residues (Asn(585) and Asn(592)) are glycosylated in G5 and that G8 has a single N-linked glycan attached to Asn(619). N-Linked glycosylation of G8 was required for efficient trafficking of the G5/G8 heterodimer, but mutations that abolished glycosylation of G5 did not prevent trafficking of the heterodimer. Both G5 and G8 are bound by the lectin chaperone, calnexin, suggesting that the calnexin cycle may facilitate folding of the G5/G8 heterodimer. To determine the effects of 13 disease-causing missense mutations in G5 and G8 on formation and trafficking of the G5/G8 heterodimer, mutant forms of the half-transporters were expressed in CHO-K1 cells. All 13 mutations reduced trafficking of the G5/G8 heterodimer from the endoplasmic reticulum to the Golgi complex, and most prevented the formation of stable heterodimers between G5 and G8. We conclude that the majority of the molecular defects in G5 and G8 that cause sitosterolemia impair transport of the sterol transporter to the cell surface.  相似文献   

10.
The ATP-binding cassette (ABC) sterol transporters are responsible for maintaining cholesterol homeostasis in mammals by participating in reverse cholesterol transport (RCT) or transintestinal cholesterol efflux (TICE). The heterodimeric ABCG5/G8 carries out selective sterol excretion, preventing the abnormal accumulation of plant sterols in human bodies, while homodimeric ABCG1 contributes to the biogenesis and metabolism of high-density lipoproteins. A sterol-binding site on ABCG5/G8 was proposed at the interface of the transmembrane domain and the core of lipid bilayers. In this study, we have determined the crystal structure of ABCG5/G8 in a cholesterol-bound state. The structure combined with amino acid sequence analysis shows that in the proximity of the sterol-binding site, a highly conserved phenylalanine array supports functional implications for ABCG cholesterol/sterol transporters. Lastly, in silico docking analysis of cholesterol and stigmasterol (a plant sterol) suggests sterol-binding selectivity on ABCG5/G8, but not ABCG1. Together, our results provide a structural basis for cholesterol binding on ABCG5/G8 and the sterol selectivity by ABCG transporters.  相似文献   

11.
We previously reported that liver-specific overexpression of ABCG5/G8 in mice is not atheroprotective, suggesting that increased biliary cholesterol secretion must be coupled with decreased intestinal cholesterol absorption to increase net sterol loss from the body and reduce atherosclerosis. To evaluate this hypothesis, we fed low density lipoprotein receptor-knockout (LDLr-KO) control and ABCG5/G8-transgenic (ABCG5/G8-Tg)xLDLr-KO mice, which overexpress ABCG5/G8 only in liver, a Western diet containing ezetimibe to reduce intestinal cholesterol absorption. On this dietary regimen, liver-specific ABCG5/G8 overexpression increased hepatobiliary cholesterol concentration and secretion rates (1.5-fold and 1.9-fold, respectively), resulting in 1.6-fold increased fecal cholesterol excretion, decreased hepatic cholesterol, and increased (4.4-fold) de novo hepatic cholesterol synthesis versus LDLr-KO mice. Plasma lipids decreased (total cholesterol, 32%; cholesteryl ester, 32%; free cholesterol, 30%), mostly as a result of reduced non-high density lipoprotein-cholesterol and apolipoprotein B (apoB; 36% and 25%, respectively). ApoB-containing lipoproteins were smaller and lipid-depleted in ABCG5/G8-TgxLDLr-KO mice. Kinetic studies revealed similar 125I-apoB intermediate density lipoprotein/LDL fractional catabolic rates, but apoB production rates were decreased 37% in ABCG5/G8-TgxLDLr-KO mice. Proximal aortic atherosclerosis decreased by 52% (male) and 59% (female) in ABCG5/G8-TgxLDLr-KO versus LDLr-KO mice fed the Western/ezetimibe diet. Thus, increased biliary secretion, resulting from hepatic ABCG5/G8 overexpression, reduces atherogenic risk in LDLr-KO mice fed a Western diet containing ezetimibe. These findings identify distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism and atherosclerosis.  相似文献   

12.
Nucleotide binding domains (NBDs) of the multidrug transporter of Candida albicans, CaCdr1p, possess unique divergent amino acids in their conserved motifs. For example, NBD1 (N-terminal-NBD) possesses conserved signature motifs, while the same motif is divergent in NBD2 (C-terminal-NBD). In this study, we have evaluated the contribution of these conserved and divergent signature motifs of CaCdr1p in ATP catalysis and drug transport. By employing site-directed mutagenesis, we made three categories of mutant variants. These included mutants where all the signature motif residues were replaced with either alanines or mutants with exchanged equipositional residues to mimic the conservancy and degeneracy in opposite domain. In addition, a set of mutants where signature motifs were swapped to have variants with either both the conserved or degenerated entire signature motif. We observed that conserved and equipositional residues of NBD1 and NBD2 and swapped signature motif mutants showed high susceptibility to all the tested drugs with simultaneous abrogation in ATPase and R6G efflux activities. However, some of the mutants displayed a selective increase in susceptibility to the drugs. Notably, none of the mutant variants and WT-CaCdr1p showed any difference in drug and nucleotide binding. Our mutational analyses show not only that certain conserved residues of NBD1 signature sequence (S304, G306, and E307) are important in ATP hydrolysis and R6G efflux but also that a few divergent residues (N1002 and E1004) of NBD2 signature motif have evolved to be functionally relevant and are not interchangeable. Taken together, our data suggest that the signature motifs of CaCdr1p, whether it is divergent or conserved, are nonexchangeable and are functionally critical for ATP hydrolysis.  相似文献   

13.
Mutations in the ATP-binding cassette (ABC) transporters ABCG5 and ABCG8 lead to sitosterolemia, a disorder characterized by sterol accumulation and premature atherosclerosis. ABCG5 and ABCG8 are both half-size transporters that have been proposed to function as heterodimers in vivo. We have expressed the recombinant human ABCG5 and ABCG8 genes in the yeast Pichia pastoris and purified the proteins to near homogeneity. Purified ABCG5 and ABCG8 had very low ATPase activities (<5 nmol min(-)(1) mg(-)(1)), suggesting that expression of ABCG5 or ABCG8 alone yielded nonfunctional transporters. Coexpression of the two genes in P. pastoris greatly increased the yield of pure proteins, indicating that the two transporters stabilize each other during expression and purification. Copurified ABCG5/G8 displayed low but significant ATPase activity with a V(max) of approximately 15 nmol min(-)(1) mg(-)(1). The ATPase activity was not stimulated by sterols. The catalytic activity of copurified ABCG5/G8 was characterized in detail, demonstrating low affinity for MgATP, a preference for Mg as a metal cofactor and ATP as a hydrolyzed substrate, and a pH optimum near 8.0. AlFx and BeFx inhibited MgATP hydrolysis by specific trapping of nucleotides in the ABCG5/G8 proteins. Furthermore, ABCG5/G8 eluted as a dimer on gel filtration columns. The data suggest that the hetero-dimer is the catalytically active species, and likely the active species in vivo.  相似文献   

14.
ATP-binding cassette (ABC) G5 (G5) and ABCG8 (G8) heterodimerize and function as sterol transporter that promote biliary excretion of neutral sterols. Both G5 and G8 interact with a lectin-like chaperone, calnexin (CNX), in the endoplasmic reticulum (ER) but the significance of this interaction remains unclear. Here, we show that not only CNX, but also its homologue calreticulin (CRT), is involved in the biosynthesis of G5/G8 sterol transporter. Both CNX and CRT interacted with immature forms of G5 and G8, and stimulated their productive folding by inhibiting their degradation. Interestingly, CRT predominantly enhanced the cell surface expression of mature G5/G8 whereas CNX did not have a similar effect. Inhibitors of N-glycan processing indicated that quality control of G5 and G8 might be differentially regulated in the ER. These findings clarify the role of CNX and CRT in the biosynthesis and quality control of G5/G8 sterol transporter.  相似文献   

15.
Bhatia A  Schäfer HJ  Hrycyna CA 《Biochemistry》2005,44(32):10893-10904
Human ABCG2, a member of the ATP binding cassette (ABC) transporter superfamily, is overexpressed in numerous multidrug-resistant cells in culture. Localized to the plasma membrane, ABCG2 contains six transmembrane segments and one nucleotide binding domain (NBD) and is thought to function as a dimer or higher order oligomer. Chimeric fusion proteins containing two ABCG2 proteins joined either with or without a flexible linker peptide were expressed at the plasma membrane and maintained drug transport activity. Expression of an ABCG2 variant mutated in a conserved residue in the Walker B motif of the NBD (D210N) resulted in a non-functional protein expressed at the cell surface. Expression of an ABCG2 chimeric dimer containing the D210N mutation in the first ABCG2 resulted in a dominant-negative phenotype, as the protein was expressed at the surface but was not functional. Using a bifunctional photoaffinity nucleotide analogue and a non-membrane-permeable cysteine-specific chemical cross-linking agent, a dimer is the predominant form of oligomerized ABCG2 under our assay conditions. Furthermore, these experiments demonstrated that the dimer interface includes, but may not be limited to, interactions between residues in each monomeric NBD and separate disulfide interactions between the cysteines in the third extracellular loop of each monomer. By changing all three extracellular cysteines to alanine, we showed that although extracellular disulfide bonds may exist between monomers, they are not essential for ABCG2 localization, transport activity, or prazosin-stimulated ATPase activity. Together, these data suggest that ABCG2 functions as a dimer, but do not exclude functional higher order oligomers.  相似文献   

16.
Liver X receptor (LXR) is a nuclear receptor that plays a crucial role in orchestrating the trafficking of sterols between tissues. Treatment of mice with a potent and specific LXR agonist, T0901317, is associated with increased biliary cholesterol secretion, decreased fractional cholesterol absorption, and increased fecal neutral sterol excretion. Here we show that expression of two target genes of LXRalpha, the ATP-binding cassette (ABC) transporters Abcg5 and Abcg8, is required for both the increase in sterol excretion and the decrease in fractional cholesterol absorption associated with LXR agonist treatment. Mice expressing no ABCG5 and ABCG8 (G5G8(-/-) mice) and their littermate controls were treated for 7 days with T0901317. In wild type animals, treatment with the LXR agonist resulted in a 3-fold increase in biliary cholesterol concentrations, a 25% reduction in fractional cholesterol absorption, and a 4-fold elevation in fecal neutral sterol excretion. In contrast, the LXR agonist did not significantly affect biliary cholesterol levels, fractional cholesterol absorption, or neutral fecal sterol excretion in the G5G8(-/-) mice. Thus Abcg5 and Abcg8 are required for LXR agonist-associated changes in dietary and biliary sterol trafficking. These results establish a central role for ABCG5 and ABCG8 in promoting cholesterol excretion in vivo.  相似文献   

17.
Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution   总被引:3,自引:0,他引:3  
ATP-binding cassette transporters G5 and G8 are half-transporters expressed on the apical membranes of enterocytes and hepatocytes that limit intestinal uptake and promote secretion of neutral sterols. Genetic defects that inactivate either half-transporter cause accumulation of cholesterol and plant sterols, resulting in premature coronary atherosclerosis. These observations suggest that G5 and G8 promote the translocation of sterols across membranes, but the primary transport substrate of the G5G8 complex has not been directly determined. Here we report the development of a sterol transfer assay using "inside-out" membrane vesicles from Sf9 cells expressing recombinant mouse G5 and G8. Radiolabeled cholesterol or sitosterol was transferred from donor liposomes to G5- and G8-containing membrane vesicles in an ATP-dependent and vanadate-sensitive manner; net transfer of cholesterol was associated with an increase in vesicular cholesterol mass. CTP, GTP, and UTP, as well as ATP, supported transfer but with lesser efficiency (ATP > CTP > GTP > UTP). Transfer was specific for sterols and was stereoselective; minimal ATP-dependent and vanadate-sensitive transfer of cholesteryl oleate, phosphatidylcholine, or enantiomeric cholesterol was observed. These studies indicate that G5 and G8 are sufficient for reconstitution of sterol transfer activity in vitro and provide the first demonstration that sterols are direct transport substrates of the G5 and G8 heterodimer.  相似文献   

18.
Previous studies suggest an interdependent relationship between liver and intestine for cholesterol elimination from the body. We hypothesized that a combination of ursodiol (Urso) and ezetimibe (EZ) could increase biliary secretion and reduce cholesterol reabsorption, respectively, to promote cholesterol excretion. Treatment with Urso increased hepatic ABCG5 ABCG8 (G5G8) protein and both biliary and fecal sterols in a dose-dependent manner. To determine whether the drug combination (Urso-EZ) further increased cholesterol excretion, mice were treated with Urso alone or in combination with two doses of EZ. EZ produced an additive and dose-dependent increase in fecal neutral sterol (FNS) elimination in the presence of Urso. Finally, we sequentially treated wide-type and G5G8-deficient mice with Urso and Urso-EZ to determine the extent to which these effects were G5G8 dependent. Although biliary and FNS were invariably lower in G5G8 KO mice, the relative increase in FNS following treatment with Urso alone or the Urso-EZ combination was not affected by genotype. In conclusion, Urso increases G5G8, biliary cholesterol secretion, and FNS and acts additively with EZ to promote fecal sterol excretion. However, the stimulatory effect of these agents was not G5G8 dependent.  相似文献   

19.
20.
The main player in biliary cholesterol secretion is the heterodimeric transporter complex, ABCG5/ABCG8, the function of which is necessary for the majority of sterols secreted into bile. It is not clear whether the primary step in this process is flopping of cholesterol from the inner to the outer leaflet of the canalicular membrane, with desorption by mixed micelles, or decreasing of the activation energy required for cholesterol desorption from the outer membrane leaflet. In this study, we investigated these mechanisms by infusing Abcg8(+/+), Abcg8(+/-), and Abcg8(-/-) mice with hydrophilic and hydrophobic bile salts. In Abcg8(-/-) mice, this failed to substantially stimulate biliary cholesterol secretion. Infusion of the hydrophobic bile salt taurodeoxycholate also resulted in cholestasis, which was induced in Abcg8(-/-) mice at a much lower infusion rate compared with Abc8(-/-) and Abcg8(+/-) mice, suggesting a reduced cholesterol content in the outer leaflet of the canalicular membrane. Indeed, isolation of canalicular membranes revealed a reduction of 45% in cholesterol content under these conditions in Abcg8(-/-) mice. Our data support the model that ABCG5/ABCG8 primarily play a role in flopping cholesterol (and sterols) from the inner leaflet to the outer leaflet of the canalicular membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号