首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
用基因芯片检测DPYD等位基因在受试人群中的发生频率   总被引:3,自引:0,他引:3  
二氢嘧啶脱氢酶基因(DPYD基因)所编码的二氢嘧啶脱氢酶(DPD酶)是氟化嘧啶类抗肿瘤药物代谢的主要限速酶,其活性存在显著的个体差异,并因此影响药物的疗效和毒副作用.大部分编码低/无活性酶的突变型等位基因是由于基因中的单核苷酸多态性(single nucleotide polymorphism,SNP)造成的,检测这些SNPs是预测患者对药物的反应和实现个体化给药方案的基础.制备并优化了用于检测DPYD基因中6个已知SNPs所编码的等位基因(DPYD*2,*3,*4,*5,*9,*12)的基因芯片,建立了该芯片的基因分型标准.并利用该芯片检测了肿瘤患者(112例)、肾病患者(83例)和健康者(45例)中DPYD突变型等位基因的发生频率.在受试人群中,突变型等位基因DPYD*5和DPYD*9平均发生率分别为32.08%和11.25%,未发现DPYD*2,*3,*4,*12突变型等位基因.而且以上单碱基突变的发生率在肿瘤患者、肾病患者和健康者间以及男性、女性肿瘤患者间无显著性差异,表明其与疾病的发生或性别无显著性关联.对20例标本的基因分型结果采用直接测序法进行验证,19例基因芯片分型结果与直接测序法结果相一致.DPYD*5、DPYD*9突变型等位基因在受试人群中具有较高的发生率.利用基因芯片能够对其实现快速准确的检测.  相似文献   

2.
为分析DNA损伤修复相关基因NBS1单核苷酸多态性(SNPs)与原发性肝癌遗传易感性的关系,并对高分辨率单链构象多态性(SSCP)检测技术在SNPs分型中的适用性进行评估,本研究对来自中国汉族人群的327例原发性肝癌以及295例阴性对照中NBS1基因常见SNPs的稀有等位基因频率进行检测和分析.此外,对NBS1基因6个常见SNPs分别选择部分样本同时进行直接序列测定,以比较2种方法的检测效果.119例原发性肝癌以及95例肝硬化/慢性肝炎组织标本的SSCP分析结果表明,6个常见NBS1基因SNPs位点(102G>A, 320+208G/A, 553G>C, 1197T>C, 2016A>G和2071-30A>T)中,SNP 1197T>C的稀有等位基因频率为68.1%,显著高于肝硬化/慢性肝炎对照的57.9% (P = 0.0298).对该SNP位点另外采用208份肝细胞癌和200份健康人群血液标本进一步分析, 肝细胞癌SNP 1197T>C的稀有等位基因频率为66.8%,显著高于健康人群对照的58.8% (P = 0.0170).其他5个SNPs的稀有等位基因频率在原发性肝癌与肝硬化/慢性肝炎之间均无显著性差异.高分辨率SSCP分析法与直接序列测定法对所选样本的SNPs基因分型结果完全一致,而且直接测序法对PCR扩增产物质量的要求相对高分辨率SSCP分析更高.研究表明,中国汉族人群NBS1基因SNP 1197T>C可能与原发性肝癌的发生相关,高分辨率SSCP技术准确度与直接测序法相当,且操作更加简便易行,非常适用于大量样本多个已知SNPs的基因分型.  相似文献   

3.
HLA-A*2402是中国人群中最常见的等位基因之一,为研究该基因型人群的人巨细胞病毒(HCMV)特异性细胞毒T细胞(CTL)免疫应答,需要制备负载相应抗原肽的HLA-A*2402四聚体。以RT-PCR方法克隆HLA-A*2402重链基因的cDNA,并构建了羧基端融合生物素化酶BirA底物肽(BSP)的HLA-A*2402重链胞外域融合蛋白(HLA-A*2402-BSP)的表达载体,但该载体不能在大肠杆菌(E. coli)中有效表达HLA-A*2402-BSP融合蛋白;通过对氨基端(N端)区域编码区的密码子进行优化,构建了同义突变的HLA-A*2402-BSP表达载体,融合蛋白在E. coli中获得了高效表达。进而制备了负载HLA-A*2402限制性HCMV pp65341-349抗原肽(QYDPVAALF, QYD)的可溶性HLA-A*2402-QYD单体分子和四聚体,获得的四聚体具有与HLA-A24+供者抗原特异性CTL的结合活性,特异性CTL的频率为总CD8+T细胞的0.09%~0.37%。这些结果为进一步研究HLA-A*2402限制性的特异性CTL免疫应答规律奠定基础。  相似文献   

4.
HLA-A*2402是中国人群中最常见的等位基因之一,为研究该基因型人群的人巨细胞病毒(HCMV)特异性细胞毒T细胞(CTL)免疫应答,需要制备负载相应抗原肽的HLA-A*2402四聚体。以RT-PCR方法克隆HLA-A*2402重链基因的cDNA,并构建了羧基端融合生物素化酶BirA底物肽(BSP)的HLA-A*2402重链胞外域融合蛋白(HLA-A*2402-BSP)的表达载体,但该载体不能在大肠杆菌(E. coli)中有效表达HLA-A*2402-BSP融合蛋白;通过对氨基端(N端)区域编码区的密码子进行优化,构建了同义突变的HLA-A*2402-BSP表达载体,融合蛋白在E. coli中获得了高效表达。进而制备了负载HLA-A*2402限制性HCMV pp65341-349抗原肽(QYDPVAALF, QYD)的可溶性HLA-A*2402-QYD单体分子和四聚体,获得的四聚体具有与HLA-A24+供者抗原特异性CTL的结合活性,特异性CTL的频率为总CD8+T细胞的0.09%~0.37%。这些结果为进一步研究HLA-A*2402限制性的特异性CTL免疫应答规律奠定基础。  相似文献   

5.
neu基因编码一种和表皮生长因子受体同源的磷酸蛋白,具有酪氨酸激酶的活性.近年来在多种人类肿瘤中发现neu基因的扩增和(或)过量表达.一些蛋白质因子或化学药物可以在转录水平阻遏neu基因的过量表达或者降低其产物p185neu的酪氨酸激酶活性,抑制具有neu基因过量表达的癌细胞的转移和增殖.  相似文献   

6.
MRP基因与肿瘤的多药耐药性   总被引:1,自引:0,他引:1  
在人肿瘤非典型性多药耐药机制的研究中发现了一个新的基因——多药耐药相关蛋白基因(MRP).该基因位于人16号染色体P13∶3,编码1 531个氨基酸.其产物为多药耐药相关蛋白(MRP),分子质量190 ku,故又名p190. MRP属ABC超家族成员,主要分布在细胞的质膜上.MRP的功能可能是在能量依赖的外排系统中发挥作用.除了一些肿瘤细胞系外,MRP基因的高表达还见于一些血液系肿瘤及乳腺癌等.MRP基因的高表达还可能与某些肿瘤的复发和预后有关.  相似文献   

7.
非编码的mRNA     
非编码的mRNA是近年发现的一类不含典型ORF的mRNA.目前已发现或克隆的这类基因主要有:H19基因,XIST基因,XLSIRT基因,His-1基因,bic基因,rox1和rox2基因等.它们与胚胎发育,肿瘤发生及X染色体失活密切相关.  相似文献   

8.
mPC-1基因的克隆与特性分析   总被引:1,自引:0,他引:1  
为深入研究人前列腺癌相关基因PC-1的生物功能和进化保守状况,从小鼠肾脏中克隆了全长cDNA序列,命名为mPC-1(GenBank Acc No.AY048852).mPC-1基因cDNA全长为2 193 bp,主要定位于小鼠染色体3A1-A2区域.mPC-1基因最大开放阅读框编码的蛋白质由224个氨基酸组成,与人PC-1蛋白编码区存在82%的序列一致性,含有coiled-coil结构域和PEST结构域.生物信息学分析表明,由6个外显子组成的mPC-1基因与mD52高度同源,其中,第一外显子代表该基因的特异性序列,实验证据显示mPC-1基因具有自己的启动子,推测mPC-1与小鼠mD52可能是重叠基因.对小鼠20种组织器官和不同发育阶段的胚胎组织cDNA的RT-PCR检测证实,该基因主要在前列腺、肾和眼组织中表达,在胃和平滑肌中有少量表达,在其他组织中表达很弱或不表达.而mD52基因则几乎广泛存在于小鼠的各个组织器官中,因此,两个基因虽然序列上高度重叠却是独立调控的.综上所述,mPC-1基因可能是一个与人PC-1基因结构功能类似的新基因.  相似文献   

9.
AtNHX2基因是拟南芥NHX基因家族的一员,编码了一种液泡膜中的Na+/H+反向运输体并对拟南芥的耐盐能力起着重要的作用.采用PCR扩增的方法克隆了拟南芥AtNHX2基因启始密码子上游约2.8 kb的DNA片段,并将其克隆到植物表达载体pCAMBIA1301-1中,通过基因枪轰击洋葱表皮瞬时表达的方法,初步检测启动子的活性.将重组质粒pCAMBIA1301-1/AtNHX2 promoter转化拟南芥并筛选纯合子.AtNHX2 promoter-GUS分析显示AtNHX2在所有的组织中均有表达,包括根尖.在保卫细胞中检测到了强烈的GUS表达,这一结果表明,AtNHX2对特殊细胞的pH调控和K+自身稳定方面起着重要的作用.AtNHX2启动子的活性可被NaCl抑制,并且抑制的强度和NaCl的浓度成正相关. 300 mmol/L KCl处理可增强启动子的活性,说明NaCl和KCl是在转录水平上调控AtNHX2的表达.在老叶中GUS活性比在新叶中GUS活性强,这说明了AtNHX2优先将有毒的离子积累在老叶中,从而有利于植物的正常发育.在根毛细胞中也观测到了强烈的GUS活性,这就暗示了AtNHX2在扩大的液泡中储存Na+.  相似文献   

10.
同源盒基因(Hox)与哺乳动物生殖   总被引:2,自引:0,他引:2  
哺乳动物的同源盒基因(Hox)与果蝇的同源异形基因是同源基因,该基因编码的DNA片段含183碱基对,转录由61个氨基酸残基组成的蛋白质保守结构域,称同源异型域.Hox基因碱基顺序及在染色体中的位置都是高度保守的.Hox基因在体节结构分化等空间信息调控中起着重要作用,按特异的空间模式赋予每一体节其自身的特点.近年来的研究表明,Hox基因不但影响胚胎发育,而且与成体生殖系统分化有关,在着床期子宫接受态的建立及子宫蜕膜反应的发生等生殖过程中起着重要的调节作用.  相似文献   

11.
Dihydropyrimidine dehydrogenase enzyme (DPD) deficiency is a pharmacogenetic syndrome leading to severe side-effects in patients receiving therapies containing the anticancer drug 5-fluorouracil (5-FU). The aim of this population study is to evaluate gene variations in the coding region of the dihydropyrimidine dehydrogenase gene (DPYD) in the Tunisian population. One hundred and six unrelated healthy Tunisian volunteers were genotyped by denaturing HPLC (DHPLC). Twelve variants in the coding region of the DPYD were detected. Allele frequencies of DPYD*5 (A1627G), DPYD*6 (G2194A), DPYD*9A (T85C), A496G, and G1218A were 12.7%, 7.1%, 13.7%, 5.7%, and 0.5%, respectively. The DPYD alleles DPYD*2A (IVS 14+1g>1), DPYD*3 (1897 del C) and DPYD*4 (G1601A) associated with DPD deficiency were absent from the examined subjects. We describe for the first time a new intronic polymorphism IVS 6-29 g>t, found in an allelic frequency of 4.7% in the Tunisian population. Comparing our data with that obtained in Caucasian, Egyptian, Japanese and African-American populations, we found that the Tunisian population resembles Egyptian and Caucasian populations with regard to their allelic frequencies of DPYD polymorphisms. This study describes for the first time the spectrum of DPYD sequence variations in the Tunisian population.  相似文献   

12.
Arylamine N-acetyltranferase 2 is the main enzyme responsible for the isoniazid metabolization into hepatotoxic intermediates and the degree of hepatotoxicity severity has been attributed to genetic variability in the NAT2 gene. The main goal of this study was to describe the genetic profile of the NAT2 gene in individuals from two different regions of Brazil: Rio de Janeiro and Goiás States. Therefore, after preparation of DNA samples from 404 individuals, genotyping of the coding region of NAT2 was performed by direct PCR sequencing. Thirteen previously described SNPs were detected in these Brazilian populations, from which seven: 191 G>A; 282 C>T; 341 T>C; 481 C>T; 590 G>A; 803 A>G and 857 G>A are the most frequent in other populations. The presence of so-called ethnic-specific SNPs in our population is in accordance with the Brazilians' multiple ancestry. Upon allele and genotype analysis, the most frequent NAT2 alleles were respectively NAT2*5B (33%), NAT2*6A (26%) and NAT2*4 (20%) being NAT2*5/*5 the more prevalent genotype (31.7%). These results clearly demonstrate the predominance in the studied Brazilian groups of NAT2 alleles associated with slow over the fast and intermediate acetylator genotypes. Additionally, in Rio de Janeiro, a significantly higher frequency of intermediate acetylation status was found when compared to Goiás (42.5% versus 25%) (p=0.05), demonstrating that different regions of a country with a population characterized by a multi-ethnic ancestry may present a large degree of variability in NAT2 allelic frequencies. This finding has implications in the determination of nationwide policies for use of appropriate anti-TB drugs.  相似文献   

13.
Wen S  Wang H  Ding Y  Liang H  Wang S 《Genetic testing》2004,8(4):411-416
Human cytochrome P450 3A4 (CYP34A) plays an important role in the metabolism of many endo- and xenomaterials. It also exhibits a substantial interindividual variation in enzymatic activity. It has been shown that the mutant alleles of CYP3A4 encoding inactive/decreased enzymes are largely caused by single nucleotide polymorphisms (SNPs) in the gene sequence. In the present study, with the goal of detecting the known SNPs of CYP3A4, an oligonucleotide microarray was created. A genotyping standard for this microarray was also established using constructed plasmids as standard templates. The 12 SNPs of CYP3A4 in 387 Chinese DNA samples were screened using this oligonucleotide microarray. Three heterozygous subjects of CYP3A4*/*4, 5 heterozygous subjects of CYP3A4*1/*5, 4 heterozygous subjects of CPY3A4*1/6, and 6 heterozygous subjects of CYP3A4*1/*18 were found. The genotyping results of the 18 heterozygous subjects and 12 wild-type subjects were validated by direct sequencing.  相似文献   

14.
Purine and pyrimidine antimetabolites are used to treat leukemias, autoimmune diseases, and solid tumors. Detection of slow metabolizers before administration of the drugs is necessary to prevent any subsequent drug toxicity. With this aim, we determined the frequencies of normal and slow alleles in our population. Polymorphisms in genes encoding cytidine deaminase (CDA), dihydropyrimidine dehydrogenase (DPYD), and thiopurine-S-methyltransferase (TPMT) were documented in 225 healthy volunteers. The polymorphisms typed included CDA*3, DPYD*2A, TPMT*2A, TPMT*3B, and TPMT*3C. Methods used for genotyping included standard PCR-RFLP and allele-specific PCR reactions. The frequencies were 0.44?% for DPYD*2A, 0.67?% for TPMT*3B, and 0.89?% for TPMT*3C. The CDA*3 and TPMT*2A alleles were not detected. Although these polymorphisms have been demonstrated to be associated with drug toxicity in other populations, they appear to be very rare in the adult Indian population.  相似文献   

15.
Recent studies have demonstrated that alleles at single nucleotide polymorphisms (SNPs) rs2187668 and rs4664308 within genes HLA-DQA1 and PLA2R1, respectively, had a significant impact on the susceptibility to idiopathic membranous nephropathy (IMN). Analysis of the two genomic loci could identify alleles for individuals at risk for IMN. Conventional methods for genotyping are labor intensive, expensive or time consuming. High resolution melting (HRM) is a new technique for genotyping and has the advantages of simplicity, speed, high sensitivity and low cost. Here, we describe genotyping of SNPs rs2187668 and rs4664308 using HRM. In this study, we identified polymorphisms of rs2187668 and rs4664308 in 480 healthy unrelated Chinese volunteers of two ethnic groups from three different geographical areas in China. The two genomic loci were genotyped by HRM using a saturating fluorescent dye SYTO® 9 on 7900 HT and RG 6000 instruments, and were further confirmed by direct DNA sequencing. Three different SNP genotypes were sufficiently distinguished by HRM with mean sensitivity of 98.8% and mean error rate of 1.9%. In addition, the allele frequencies varied greatly based on ethnic or geographic origins. In conclusion, HRM is a rapid, cost efficient, sensitive, suitable technique for genotyping, and simple enough to be readily implemented in a diagnostic laboratory. We believe this will be a valuable technique for determining the genotype of rs2187668 and rs4664308 and for assessing individual susceptibility to IMN.  相似文献   

16.
Novinska MS  Pietz BC  Ellis TM  Newman DK  Newman PJ 《Gene》2006,376(1):95-101
Previous studies have reported the existence of eleven different single nucleotide polymorphisms (SNPs) within human PECAM-1 mRNA, several of which have recently been associated with disease. Though SNPs in the PECAM-1 gene have been known for some time, the genetic background on which they exist, and their association into distinct allelic isoforms has not yet been established. To identify the major allelic isoforms of PECAM-1, we determined the nucleotide sequence of individual full-length cloned cDNAs derived from anonymous, unrelated volunteer individuals. Initial sequence analysis of 34 alleles from 17 individuals confirmed the presence of two distinct human PECAM-1 alleles (L(98)S(536)R(643) and V(98)N(536)G(643)) within the human population. Each of these were found, upon more detailed analysis, to be superimposed on a previously unreported a2479g nucleotide polymorphism within the 3' untranslated region (3'UTR) that occurred on both allelic isoforms - yielding a total of four major alleles. Multiplex Luminex bead analysis of an additional 259 individuals allowed identification of 117 individuals homozygous for either the L(98)S(536) or V(98)N(536) allele, and sequence analysis around the R643G and a2479g polymorphic sites permitted accurate determination of significant differences in the gene frequencies of LSRa, LSRg, VNGa, and VNGg among Caucasian individuals. Identification of these PECAM-1 allelic isoforms should facilitate future detailed examination of PECAM-1-related disease associations, and may help resolve previously disparate results.  相似文献   

17.
Mutations in the DPYD gene, which encodes dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme in the catabolism of pyrimidines, are responsible for an inborn error of metabolism associated with thymine-uraciluria and neurological symptoms. Because the antimetabolite 5-fluorouracil (5-FU) is metabolized by the same enzyme, deficient DPYD alleles may also constitute a risk factor for severe toxicity following treatment with this anticancer drug. The aim of this study was to develop a comprehensive and rapid method to detect sequence variations within the DPYD gene. Using polymerase chain reaction (PCR) amplification and denaturing high-performance liquid chromatography (DHPLC), we established a protocol that makes it possible to screen all 23 exons of the DPYD gene and their exon-intron boundaries for both known and unknown mutations under identical conditions. A novel one-step PCR mutagenesis procedure was developed to generate heterozygous mutant amplicons as positive controls to optimize DHPLC detection of any sequence variation. DHPLC analysis was shown to result in mutation-specific elution profiles and to be able to distinguish different base changes within the same exon or different heterozygous combinations of mutations within the same exon. By analyzing the DPYD gene in 16 affected individuals, a total of 47 base changes were detected, representing eight known mutations and three novel intronic base changes. Sequence analysis confirmed all base changes detected. This method will be useful in identifying patients at risk for toxicity prior to 5-FU treatment, as well as in the analysis of individual patients with thymine-uraciluria.  相似文献   

18.
The CYP2D6 gene codes for a P450 monooxygenase which is involved in the biotransformation of a large number of commonly prescribed drugs. Adverse drug effects and therapeutic failure can be related to abnormal CYP2D6 activity. We investigated the allele and genotype frequencies of cytochrome P4502D6 in a Spanish population to predict the prevalence of ultra-rapid and poor metabolizer phenotypes in our population and to design a feasible CYP2D6 genotyping protocol. The study included 105 healthy unrelated Spanish Caucasian volunteers. CYP2D6 genotyping was performed by a combination of long-PCR, direct sequencing and allele-specific real-time PCR. The frequency of the wild-type CYP2D6*1 allele was 31%. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity showed frequencies of 40.47, 2.38 and 1.90%, respectively. Frequencies of defective alleles *3, *4, *5 and *6 were 0.95, 13.8, 3.33 and 0.95%, respectively. The defective CYP2D6 alleles *7, *8, *12, *14, *15 and *21 were not found. Duplicated CYP2D6 alleles were detected at a frequency of 4.27%. Our protocol allows the identification of the four inactive CYP2D6 alleles (*3, *4, *5 and *6) and the detection of alleles with CYP2D6 *1, CYP2D6 *2 and CYP2D6*4 gene duplications. Testing for this reduced CYP2D6 allele set would facilitate its use in clinical practice by assisting in the development of individualized pharmacotherapy.  相似文献   

19.
We investigated the association between two single nucleotide polymorphisms (SNPs) in the adiponectin gene (rs822395 and rs266729) and coronary artery disease (CAD) in a case-control study of 198 unrelated Chinese CAD patients (with ≥ 70% coronary stenosis or previous myocardial infarction) and 237 non-CAD controls. The ligase reaction was used to detect SNPs rs822395 and rs266729, and the allelic association of these SNPs with the occurrence and severity of CAD was assessed. There were no significant differences in the genotypic or allelic frequencies of the two SNPs between control and CAD individuals. In addition, there was no association between the two SNPs and the severity of CAD based on the number of diseased vessels. The frequencies of alleles C and G at rs266729 differed significantly between females in the CAD and control groups, but not between males. Female carriers of allele G at rs266729 had a higher risk of CAD compared with allele C carriers (OR = 1.30, 95% CI: 1.09-2.64, p = 0.02). These results indicate a gender-specific effect of the adiponectin gene rs266729 variant in modulating the risk of CAD in women.  相似文献   

20.
CYP2C9 is the major P450 2C enzyme in human liver and contributes to the metabolism of a number of clinically important substrate drugs. This polymorphically expressed enzyme has been studied in Caucasian, Asian, and to some extent in African American populations, but little is known about the genetic variation in Native American populations. We therefore determined the 2C9*2 (Arg144Cys) and 2C9*3 (Ile359Leu) allele frequencies in 153 Native Canadian Indian (CNI) and 151 Inuit subjects by PCR-RFLP techniques. We also present genotyping data for two reference populations, 325 Caucasian (white North American) and 102 Chinese subjects. Genotyping analysis did not reveal any 2C9*4 alleles in the CNI, Inuit, Caucasian, or Chinese individuals. The 2C9*2 allele appears to be absent in Chinese and Inuit populations, but was present in CNI and Caucasian subjects at frequencies of 0.03 and 0.08-0.15, respectively. The 2C9*3 allele was not detected in the Inuit group, but occured in the CNI group (f = 0.06) at a frequency comparable to that of other ethnic groups. This group of Inuit individuals are the first population in which no 2C9*2 or *3 alleles have been detected so far. Therefore, these alleles may be extremely rare or absent, and unless other novel polymorphisms exist in this Inuit group one would not anticipate any CYP2C9 poor metabolizer subjects among this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号