首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Tetanus toxin is a potent neurotoxin that is widely considered to produce its effect through impairment of inhibitory neurotransmission. We report the effect of a single unilateral intrahippocampal injection of tetanus toxin on extracellular levels of neuroactive amino acids in freely moving rats, at times ranging between 1 and 7 days posttreatment. Tetanus toxin treatment did not alter extracellular levels of aspartate, glutamate, and taurine at any time during the study. However, although extracellular GABA levels were unaffected by toxin injection 1, 2, and 3 days after treatment, they were reduced (45 ± 8% of contralateral vehicle-injected level) at day 7. Challenge with a high K+ concentration, 7 days after treatment, produced elevations in extracellular levels of taurine and GABA in both vehicle- and toxin-injected hippocampi, with evoked levels of GABA being lower in the toxin-treated side (39 ± 16% of contralateral vehicle-injected level). Aspartate and glutamate levels were not increased by high-K+ infusion. These findings are discussed in relation to the possible role that an imbalance in excitatory/inhibitory tone may play in the production of tetanus toxin-induced neurodegeneration.  相似文献   

2.
The concentration of extracellular excitatory amino acids in the striatum of conscious, unrestrained rats was measured using intracerebral microdialysis, during chemical stimulation of the striatum in intact and hemidecorticate animals. Chemical stimulation of the striatum with tityustoxin (0.1 microM) evoked a rise in dialysate concentration of glutamate (to 383% of basal) and aspartate (to 156% of basal), accompanied by a drop in glutamine (to 55% of basal). These changes showed significant attenuation after treatment with L-proline (1 mM) or 2-chloroadenosine (15 microM). Unilateral degeneration of the corticostriate pathway, produced by frontal hemidecortication, caused a reduction in both basal and stimulated levels of glutamate in the lesioned side, whereas no effect was observed in the intact side. Similarly, basal and stimulated levels of glutamine were unchanged in the intact side, but were increased in the lesioned side. These results provide in vivo evidence for glutamate and possibly aspartate being neurotransmitters in the corticostriate pathway. In addition they lend support to previous studies in vitro, which implicated glutamine as the principal precursor for neurotransmitter glutamate.  相似文献   

3.
High-affinity uptake of neurotransmitter substrates in synaptosome-containing homogenates and tissue concentrations of amino acids were examined in subcortical areas 5-6 days after bilateral N-methyl-D-aspartate lesions confined to rat medial prefrontal cortex. D-[3H]Aspartate (32% of control) and [3H] gamma-aminobutyric acid ( [3H]GABA) (60% of control) uptakes were significantly reduced in medial prefrontal cortex, whereas [3H]choline (110% of control) uptake was unchanged, suggesting the production of axon-sparing lesions. The uptake of D-[3H]aspartate (76% of control), but not of [3H]GABA or [3H]choline, was significantly reduced in nucleus accumbens, with no concomitant reduction in amino acid concentrations. When examined in serial coronal sections, reduced D-[3H]aspartate uptake was confined to the most anterior 500 micron of nucleus accumbens (67% of contralateral sample). No significant reductions of uptake or amino acid concentrations were observed in caudate putamen or ventral tegmental area. These results suggest a role for glutamate or aspartate as neurotransmitters in projections from medial prefrontal cortex to anterior nucleus accumbens. Medial prefrontal cortex may represent the major excitatory cortical input to the nucleus accumbens.  相似文献   

4.
Abstract: 2-Amino-7-phosphonoheptanoic acid, an antagonist of excitation caused by dicarboxylic amino acids with a selective action on N -methyl-d-aspartate receptors, has been administered in an anticonvulsant dose (1 mmol/kg i.p.) to fed or fasted rats and mice. The drug impaired motor activity in fasted mice. Glucose and amino acids were determined in dissected regions of brain fixed by microwave irradiation. Glucose content was low in the brains of fasted rats and mice but was restored to normal (fed) concentration 45 min after the administration of 2-amino-7-phosphonoheptanoic acid in fasted mice. In fed animals, 2-amino-7-phosphonoheptanoic acid did not change brain aspartate concentration. In fasted animals, aspartate concentration was raised in most brain regions. In fasted rats and mice, 2-amino-7-phosphonoheptanoic acid significantly increased glutamine in rat cortex and mouse striatum, decreased glutamate content in rat striatum, and decreased aspartate concentration in all regions except mouse cortex and striatum. GABA levels were significantly decreased in rat striatum and hippocampus. These changes are consistent with an increased synaptic release of glutamate and aspartate following blockage of their post-synaptic action at selected sites.  相似文献   

5.
This study was designed to shed more light onto the three different brainstem regions which are implicated in the pain pathway for the level of various excitatory and inhibitory neurotransmitters before and following neuronal stimulation. The in vivo microdialysis technique was used in awake, freely moving adult Sprague-Dawley rats. The neurotransmitters studied included aspartate, glutamate, GABA, glycine, and taurine. The three brainstem regions examined included the mid-brain periaqueductal gray (PAG), the medullary nucleus raphe magnus (NRM), and the spinal trigeminal nucleus (STN). Neuronal stimulation was achieved following the administration of the sodium channel activator veratridine. The highest baseline levels of glutamate (P < 0.0001), aspartate (P < 0.0001), GABA (P < 0.01), taurine (P < 0.0001), and glycine (P < 0.001) were seen in the NRM. On the other hand, the lowest baseline levels of glutamate, GABA, glycine, and taurine were found in the PAG, while that of aspartate was found in the STN. Following the administration of veratridine, the highest release of the above neurotransmitters except for the aspartate and glycine was found in the PAG where the level of glutamate increased by 1,310 ± 293% (P < 0.001), taurine by 1,008 ± 143% (P < 0.01), and GABA by 10,358 ± 1,920% (P < 0.0001) when comparison was performed among the three brainstem regions and in relation to the baseline levels. The highest release of aspartate was seen in the STN (2,357 ± 1,060%, P < 0.001), while no significant difference was associated with glycine. On the other hand, the lowest release of GABA and taurine was found in the STN (696 ± 91 and 305 ± 25%, respectively), and glutamate and aspartate in the NRM (558 ± 200 and 874 ± 315%, respectively). Our results indicate, and for the first time, that although some differences are seen in the baseline levels of the above neurotransmitters in the three regions studied, there are quite striking variations in the level of release of these neurotransmitters following neuronal stimulation in these regions. In our opinion this is the first study to describe the pain activation/modulation related changes of the excitatory and inhibitory amino acids profile of the three different brainstem areas.  相似文献   

6.
1. There is a general agreement concerning the key role of the baroreceptor reflex in blood pressure homeostasis. It is also well accepted that baroreceptor afferent messages are first integrated within the nucleus tractus solitarius (NTS) and that an excitatory amino acid, probably glutamate, is the principal neurotransmitter of corresponding afferents fibers. However, important points concerning the processing of baroreceptor messages within the NTS remain to be clarified, in particular the possible modulatory role of other neuroactive substances at this particular level in the medulla oblongata.2. In this context, the present review focuses on serotonin, and the possible facilitatory influence of NTS serotonergic afferents and receptors on the baroreceptor reflex arc. Relevant pharmacological, electrophysiological, immunohistochemical, and biochemical data, are presented and discussed. They can be summarized as follows.3. The selective destruction of the nodose ganglion-NTS serotonergic pathway produces a long-term increase in blood pressure variability, similar to that caused by baroreceptor denervation.4. Microinjection of picomolar doses of 5-HT into the NTS elicits the typical responses of baroreceptor activation.5. The cardiovascular effects elicited by local microinjections of specific agonists and antagonists into the NTS of intact rats and of animals that underwent nodose ganglionectomy indicate that the baroreceptor-like effects of locally administered 5-HT are mediated by the activation of postsynaptic 5-HT2 receptors.6. The medullary pathways which mediate NTS 5-HT2 receptor-evoked responses are similar to those involved in the baroreceptor reflex arc.7. Pharmacological and electrophysiological studies suggest that the cardiovascular effects of intra-NTS 5-HT involve the 5-HT2A receptor subtype expressed by NTS barosensitive neurons that receive polysynaptic vagal afferents.8. Intra-NTS microinjection of a subthreshold dose of DOI, a 5-HT2 receptor agonist, which, on its own, does not produce any cardiovascular changes, significantly enhances the bradycardiac component of the baroreflex.9. Altogether, the data summarized above show that, in the NTS, 5-HT acting at 5-HT2A receptors exerts a facilitatory influence on the baroreceptor reflex, especially on the cardiac component of this reflex.10. Convergent pharmacological and electrophysiological data indicate that, in the NTS, functional interactions between NMDA- and 5-HT2A-receptors coexpressed by the same neurons probably underlie the facilitatory influence of 5-HT upon the baroreceptor reflex.11. Under physiological conditions, the 5-HT2A receptor-mediated facilitatory modulation of the cardiovagal component of the baroreflex might be triggered by 5-HT released from nodose ganglion-NTS serotoninergic afferent neurons and/or for serotoninergic projections originating in raphe nuclei. The latter possibility might notably occur during recovery after physical exercise and/or during the freezing reaction in stressed animals.  相似文献   

7.
The possibility that substances P (SP) is a neurotransmitter of baro- and chemoreceptor afferents in the rat was investigated. SP-like immunoreactivity (SP-I) was analyzed quantitatively by radioimmunoassay in various levels of the nucleus tractus solitarius (NTS), the site of termination of these afferents while SP-containing afferent neurons were studied in various portions of the peripheral pathways by immunocytochemistry. It was found that the NTS contained significant amounts of SP-I and that unilateral removal of the nodose ganglia reduces the SP-I content of those portions of the NTS known to receive vagal afferents. In addition, SP-I was visualized in discrete fibers in the tunica adventitia of the aortic arch and carotid sinus regions, the vagus nerve and nodose ganglia. These results in the rat are consistent with our previous studies in the cat and provide further evidence that SP is contained within baro- and chemoreceptor afferent nerves.  相似文献   

8.
Abstract: The K+-stimulated, Ca2+-dependent release of glutamate, aspartate, -γ-aminobutyric acid (GABA), alanine, taurine, and glycine was measured in slices of cerebella obtained from control, and granule cell-, granule cell plus stellate cell-, or climbing fiber-deficient cerebella of the rat. The 55 mm -K+-stimulated release of glutamate and GABA was 10-fold greater in the presence of Ca2+ than in its absence. The stimulated release of aspartate was 4-fold higher when Ca2+ was present in the bathing media, while the value for alanine was twice as high as the amount obtained in the absence of Ca2+. There was no stimulated release of either taurine or glycine from the cerebellar slices. Increasing the Mg2+ concentration to 16 HIM inhibited the K+-stimulated, Ca2+-dependent release of glutamate, GABA, aspartate, and alanine 85% or more. The K+-stimulated, Ca2+ dependent release of glutamate, aspartate, and alanine from x-irradiated cerebella deficient in granule cells was reduced to 50–57% of control value. Additional x-irradiation treatment, which further reduced the cerebellar granule cell population and also prevented the acquisition of stellate cells, decreased the release of glutamate by 77%, aspartate by 66%, alanine by 91%, and, in addition, decreased the release of GABA by 55%. The K+-stimulated, Ca2+-dependent release of glutamate, aspartate, GABA, and alanine was not changed in climbing fiber-deficient cerebella obtained from 3-acetylpyridine-treated rats. The data support a transmitter role for GABA and glutamate in the cerebellum, but do not support a similar function for either taurine or glycine. The data also suggest that alanine and aspartate may be co-released along with glutamate from granule cells.  相似文献   

9.
10.
Abstract: Rat medullary brain segments containing primarily nucleus tractus solitarius (NTS) were used for superfusion studies of evoked transmitter release and for isotherm receptor binding assays. Isotherm binding assays with [3H]CGS-21680 on membranes prepared from NTS tissue blocks indicated a single high-affinity binding site with a KD of 5.1 ± 1.4 nM and a Bmax of 20.6 ± 2.4 fmol/mg of protein. The binding density for [3H]CGS-21680 on NTS membranes was 23 times less than comparable binding on membranes from striatal tissue. Electrically stimulated (1 min at 25 mA, 2 ms, 3 Hz) release of [3H]norepinephrine ([3H]NE) from 400-µm-thick NTS tissue slices resulted in an S2/S1 ratio of 0.96 ± 0.02. Superfusion of single tissue slices with 0.1–100 nM CGS-21680, a selective adenosine A2a receptor agonist, for 5 min before the S2 stimulus produced a significant concentration-dependent increase in the S2/S1 fractional release ratio that was maximal (31.3% increase) at 1.0 nM. However, superfusion of tissue slices with CGS-21680 over the same concentration range for 20 min before the S2 stimulus did not alter the S2/S1 ratio significantly from control release ratios. The augmented release of [3H]NE mediated by 1.0 nM CGS-21680 with a 5-min tissue exposure was abolished by 1.0 and 10 nM CGS-15943 as well as by 100 nM 8-(3-chlorostyryl)caffeine, both A2a receptor antagonists, but not by 1.0 nM 8-cyclopentyl-1,3-dipropylxanthine, the A1 receptor antagonist. Taken together, these results suggest that CGS-21680 augmented the evoked release of [3H]NE in the NTS via activation of presynaptic A2a receptors within the same concentration range as the binding affinity observed for [3H]CGS-21680. It was also apparent that this population of presynaptic adenosine A2a receptors in the NTS desensitized within 20 min because the augmenting action of CGS-21680 on evoked transmitter release was not evident at the longer interval.  相似文献   

11.
Both increased gamma-aminobutyric acid (GABA)-ergic and decreased glutamatergic neurotransmission have been suggested relative to the pathophysiology of hepatic encephalopathy. This proposed disturbance in neurotransmitter balance, however, is based mainly on brain tissue analysis. Because the approach of whole tissue analysis is of limited value with regard to in vivo neurotransmission, we have studied the extracellular concentrations in the cerebral cortex of several neuroactive amino acids by application of the in vivo microdialysis technique. During acute hepatic encephalopathy induced in rats by complete liver ischemia, increased extracellular concentrations of the neuroactive amino acids glutamate, taurine, and glycine were observed, whereas extracellular concentrations of aspartate and GABA were unaltered and glutamine decreased. It is therefore suggested that hepatic encephalopathy is associated with glycine potentiated glutamate neurotoxicity rather than with a shortage of the neurotransmitter glutamate. In addition, increased extracellular concentration of taurine might contribute to the disturbed neurotransmitter balance. The observation of decreasing glutamine concentrations, after an initial increase, points to a possible astrocytic dysfunction involved in the pathophysiology of hepatic encephalopathy.  相似文献   

12.
Abstract: We have used in vivo microdialysis in anaesthetised rats to investigate whether somatostatin (SRIF) can play a neuromodulatory role in the striatum. When 100 n M SRIF was retrodialysed for 15 min, it increased concentrations of dopamine (DA) by 28-fold, γ-aminobutyric acid (GABA) by eightfold, and glutamate (Glu) by sixfold as well as those of aspartate (Asp) and taurine (Tau). These effects were both calcium- and tetrodotoxin-sensitive. Lower (10 or 50 n M ) and higher (1 µ M ) SRIF concentrations were less effective. Rapid sampling showed that whereas Asp and Glu concentrations were raised for 3 min at the start of 15-min SRIF infusions, those of DA were increased for 12 min. A second 15-min application of 100 n M SRIF given 135 min after the first application failed to increase transmitter release. An NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid (200 µ M ), blocked SRIF (100 n M )-evoked Asp, Glu, Tau, and GABA release and reduced that of DA. An α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate antagonist, 6,7-dinitroquinoxaline-2,3-dione (100 µ M ), blocked SRIF-induced DA and Tau release and reduced that of Asp, Glu, and GABA. These results show that SRIF increases DA, Glu, Asp, GABA, and Tau release in the rat striatum and suggest that its actions on DA and GABA release are mainly mediated through increased excitatory amino acid release.  相似文献   

13.
Abstract: Changes of amino acid concentrations in the vestibular nuclear complex (VNC) during lesion-induced vestibular compensation were studied in rats after unilateral vestibular ganglionectomy. Distributions of 12 amino acids within the VNC were measured at 2, 4, 7, and 30 days after surgery, using microdissection of freeze-dried brain sections and HPLC. Glutamate decreased on the lesioned side in nearly all VNC regions. Changes were fully developed 2 days after lesion and persisted through 30 days. In some regions, glutamate decreased also on the unlesioned side, especially at longer survival times, so that bilateral asymmetries became reduced. Aspartate changes were similar to those of glutamate on either side. Lesion-induced glutamine asymmetry was usually opposite to that of glutamate. Although GABA concentration decreased at early survival times, it recovered at later times and sometimes increased in dorsal parts of lateral and medial nuclei. Taurine changes were similar to those of GABA in most regions. Glycine change was primarily limited to a bilateral decrease in the dorsal part of the lateral vestibular nucleus. Concentrations of other amino acids were much lower, but some showed postlesion changes.  相似文献   

14.
In an attempt to estimate the pool size of glutamate and other amino acids in γ-aminobutyric acid (GABA)-containing neurons, we determined the content of 12 amino acids in the bilateral substantia nigra of rats, in which unilateral striatal lesions had been made with kainic acid two weeks earlier. The assay of the amino acids (including glutamate, aspartate, glutamine, asparagine, glycine, and GABA) and ethanolamine was based on HPLC and fluorimetric detection after precolumn derivatization with o-phthaldialdehyde. The levels of all measured amino acids (except those of tyrosine, threonine, and ethanolamine) were decreased in the affected striatum, but only the levels of aspartate, taurine, and GABA were lowered in the ipsilateral substantia nigra. These results indicate that the pool size of the various amino acids in the striatonigral GABAergic pathway is small compared to their nigral content, and that in addition to GABA a significant fraction of aspartate and taurine may be confined to nerve terminals in the substantia nigra.  相似文献   

15.
In rat mesencephalic cell cultures, L-glutamate at concentrations ranging from 100 microM to 1 mM stimulated release of [3H]dopamine that was attenuated by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6,7-dinitroquinoxalinedione, but not by the selective NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801; 10 microM) and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (300 microM). Even at 1 mM glutamate, this release was Ca2+ dependent. These observations suggest that the release was mediated by a non-NMDA receptor. Only release stimulated by a lower concentration (10 microM) of glutamate was inhibited by MK-801 (10 microM), indicating that glutamate at this concentration activates the NMDA receptor. By contrast, L-aspartate at concentrations of 10 microM to 1 mM evoked [3H]dopamine release that was completely inhibited by MK-801 (10 microM) and was also Ca2+ dependent (tested at 1 and 10 mM aspartate). Thus, effects of aspartate involved activation of the NMDA receptor. Sulfur-containing amino acids (L-homocysteate, L-homocysteine sulfinate, L-cysteate, L-cysteine sulfinate) also evoked [3H]dopamine release. Release evoked by submillimolar concentrations of these amino acids was attenuated by MK-801 (10 microM), indicating involvement of the NMDA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Abstract: Portal-systemic encephalopathy (PSE) is characterized by neuropsychiatric symptoms progressing through stupor and coma. Previous studies in human autopsy tissue and in experimental animal models of PSE suggest that alterations in levels of brain amino acids may play a role in the pathogenesis of PSE. To assess this possibility, levels of amino acids were measured using in vivo cerebral microdialysis in frontal cortex of portacaval-shunted rats administered ammonium acetate (3.85 mmol/kg, i.p.) to precipitate severe PSE. Sham-operated rats served as controls. Portacaval shunting resulted in significant increases of levels of extracellular glutamine (threefold, p < 0.001), alanine (38%, p < 0.01), aspartate (44%, p < 0.05), phenylalanine (170%, p < 0.001), tyrosine (140%, p < 0.001), tryptophan (63%, p < 0.001), leucine (75%, p < 0.001), and serine (60%, p < 0.001). Administration of ammonium acetate to sham-operated animals led to a significant increase in extracellular glutamine and taurine content, but this response was absent in shunted rats. The lack of taurine release into extracellular fluid following ammonium acetate administration in portacaval-shunted rats could relate to the phenomenon of brain edema in these animals. Ammonium acetate administration resulted in significant increases in the extracellular concentrations of phenylalanine and tyrosine in both sham-operated and portacaval-shunted rats. Severe PSE was not accompanied by significant increases in extracellular fluid concentrations of glutamate, aspartate, GABA, tryptophan, leucine, or serine, suggesting that increased spontaneous release of these amino acids in cerebral cortex is not implicated in the pathogenesis of hepatic coma.  相似文献   

17.
Spinal cord injury (SCI) leads to an alteration of energetic metabolism. As a consequence, glutamate, glutamine, aspartate and other important amino acids are altered after damage, leading to important disregulation of the neurochemical pathways. In the present study, we characterized the acute-phase changes in tissue concentration of amino acids involved in neurotransmitter and non-neurotransmitter actions after SCI by contusion in rats. Animals were submitted to either laminectomy or SCI by contusion and sacrificed at 2, 4, 8, and 12 h after lesion, for the analysis of tissue amino acids by HPLC. Results showed that both aspartate and glutamate contents diminished after SCI, while glutamine concentrations raised, however, the sum of molar concentrations of glutamate plus glutamine remained unchanged at all time points. GABA concentrations increased versus control group, while glycine remained unchanged. Finally, citrulline levels increased by effect of SCI, while taurine-increased only 4 h after lesion. Results indicate complex acute-phase changes in amino acids concentrations after SCI, reflecting the different damaging processes unchained after lesion.  相似文献   

18.
An involvement of the mesolimbic dopamine (DA) system in mediating the motivational effects of opioids has been suggested. Accordingly, the present study employed the technique of in vivo microdialysis to examine the effects of selective mu-, delta-, and kappa- opioids on DA release in the nucleus accumbens (NAC) of anesthetized rats. Microdialysis probes were inserted into the NAC and perfusates were analyzed for DA and its metabolites, dihydroxyphenylacetic acid (DO-PAC) and homovanillic acid (HVA), using a reverse-phase HPLC system with electrochemical detection for separation and quantification. Intracerebroventricular (i.c.v.) administration of selective mu-opioid [D-Ala2, N-methyl-Phe4, Gly5-ol]-enkephalin (DAMGO) or delta-opioid [D-Pen2, D-Pen5]-enkephalin (DPDPE) agonists, at doses that function as positive reinforcers in rats, resulted in an immediate and significant increase in extracellular DA. DOPAC and HVA levels were also significantly increased. The effects of DAMGO were blocked by the selective mu-antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) whereas those of DPDPE were blocked by the delta-antagonist allyl2-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864). In contrast to mu- and delta-agonists, the kappa-agonist N-CH3-Tyr-Gly-Gly-Phe-Leu-Arg-N-CH3-Arg-D-Leu-NHC2H5 (E-2078), a dynorphin analog that produces aversive states, decreased DA release in a biphasic manner. Norbinaltorphimine, a selective kappa-antagonist, could block this effect. These results demonstrate that mu-, delta-, and kappa-opioid agonists differentially affect DA release in the NAC and this action is centrally mediated.  相似文献   

19.
Abstract: Several putative neurotransmitters and metabolites were monitored simultaneously in the extracellular space of neostriatum, substantia nigra, and cortex and in subcutaneous tissue of the rat by in vivo microdialysis. Glutamate (Glu) and aspartate (Asp) were at submicromolar and γ-aminobutyric acid (GABA) was at nanomolar concentrations in all brain regions. The highest concentration of dopamine (DA) was in the neostriatum. Dynorphin B (Dyn B) was in the picomolar range in all brain regions. Although no GABA, DA, or Dyn B could be detected in subcutaneous tissue, Glu and Asp levels were ≈5 and ≈0.4 µM, respectively. Lactate and pyruvate concentrations were ≈200 and ≈10 µM in all regions. The following criteria were applied to ascertain the neuronal origin of substances quantified by microdialysis: sensitivity to (a) K+ depolarization, (b) Na+ channel blockade, (c) removal of extracellular Ca2+, and (d) depletion of presynaptic vesicles by local administration of α-latrotoxin. DA, Dyn B, and GABA largely satisfied all these criteria. In contrast, Glu and Asp levels were not greatly affected by K+ depolarization and were increased by perfusing with tetrodotoxin or with Ca2+-free medium, arguing against a neuronal origin. However, Glu and Asp, as well as DA and GABA, levels were decreased under both basal and K+-depolarizing conditions by α-latrotoxin. Because the effect of K+ depolarization on Glu and Asp could be masked by reuptake into nerve terminals and glial cells, the reuptake blocker dihydrokainic acid (DHKA) or l -trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was included in the microdialysis perfusion medium. The effect of K+ depolarization on Glu and Asp levels was increased by DHKA, but GABA levels were also affected. In contrast, PDC increased only Glu levels. It is concluded that there is a pool of releasable Glu and Asp in the rat brain. However, extracellular levels of amino acids monitored by in vivo microdialysis reflect the balance between neuronal release and reuptake into surrounding nerve terminals and glial elements.  相似文献   

20.
Abstract: We applied reverse microdialysis and HPLC analysis to evaluate the participation of noradrenergic neurotransmission in modulation of the baroreceptor reflex response by substance P at the nucleus tractus solitarii in Sprague-Dawley rats anesthetized with pentobarbital sodium (50 mg/kg, i.p., with 20 mg/kg/h.i.v. supplement). Continuous infusion of substance P (600 µ M ) at 1 µl/min into the nucleus tractus solitarii through a stereo-taxically positioned microdialysis probe (active exchange length, 180–200 µm; diameter, 220 µm) for 1 h elicited an enhancement of the baroreceptor reflex response. This facilitatory effect correlated positively, during the 60-min infusion period, with the time course of increase in the extracellular concentration of substance P and noradrenaline in the nucleus tractus solitarii. Experimentally elevating the concentration of noradrenaline at this medullary nucleus also augmented the baroreceptor reflex sensitivity. On the other hand, depletion of the noradrenergic fibers and nerve terminals at the nucleus tractus solitarii with DSP4 diminished the enhancement of baroreceptor reflex response and the corresponding elevation in extracellular concentration of noradrenaline by substance P. Microinfusion of noradrenaline into the nucleus tractus solitarii in DSP4-treated animals, however, potentiated the baroreceptor reflex response. These results suggest that the enhancement of baroreceptor reflex response by substance P may involve an increase in the concentration of noradrenaline at the nucleus tractus solitarii via a presynaptic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号