首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular protozoan Toxoplasma gondii triggers rapid MAPK activation in mouse macrophages (Mphi). We used synthetic inhibitors and dominant-negative Mphi mutants to demonstrate that T. gondii triggers IL-12 production in dependence upon p38 MAPK. Chemical inhibition of stress-activated protein kinase/JNK showed that this MAPK was also required for parasite-triggered IL-12 production. Examination of upstream MAPK kinases (MKK) 3, 4, and 6 that function as p38 MAPK activating kinases revealed that parasite infection activates only MKK3. Nevertheless, in MKK3(-/-) Mphi, p38 MAPK activation was near normal and IL-12 production was unaffected. Recently, MKK-independent p38alpha MAPK activation via autophosphorylation was described. Autophosphorylation depends upon p38alpha MAPK association with adaptor protein, TGF-beta-activated protein kinase 1-binding protein-1. We observed TGF-beta-activated protein kinase 1-binding protein-1-p38alpha MAPK association that closely paralleled p38 MAPK phosphorylation during Toxoplasma infection of Mphi. Furthermore, a synthetic p38 catalytic-site inhibitor blocked tachyzoite-induced p38alpha MAPK phosphorylation. These data are the first to demonstrate p38 MAPK autophosphorylation triggered by intracellular infection.  相似文献   

2.
Lipopolysaccharide (endotoxin) tolerance is well described in monocytes and macrophages, but is less well characterized in endothelial cells. Because intestinal microvascular endothelial cells exhibit a strong immune response to LPS challenge and play a critical regulatory role in gut inflammation, we sought to characterize the activation response of these cells to repeated LPS exposure. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were stimulated with LPS over 6-60 h and activation was assessed using U937 leukocyte adhesion, expression of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, manganese superoxide dismutase, HLA-DR, and CD86. Effect of repeat LPS stimulation on HIMEC NF-kappaB and mitogen-activated protein kinase (MAPK) activation, generation of superoxide anion, and Toll-like receptor 4 expression was characterized. LPS pretreatment of HIMEC for 24-48 h significantly decreased leukocyte adhesion after subsequent LPS stimulation. LPS pretreatment inhibited expression of E-selectin, VCAM-1, IL-6, and CD86, while ICAM-1, IL-8, and HLA-DR were not altered. Manganese superoxide dismutase expression increased with repeated LPS stimulation, with a reduction in intracellular superoxide. NF-kappaB activation was transiently inhibited by LPS pretreatment for 6 h, but not at later time points. In contrast, p44/42 MAPK, p38 MAPK, and c-Jun N-terminal kinase activation demonstrated inhibition by LPS pretreatment 24 or 48 h prior. Toll-like receptor 4 expression on HIMEC was not altered by LPS. HIMEC exhibit endotoxin tolerance after repeat LPS exposure in vitro, characterized by diminished activation and intracellular superoxide anion concentration, and reduced leukocyte adhesion. HIMEC possess specific mechanisms of immunoregulatory hyporesponsiveness to repeated LPS exposure.  相似文献   

3.
Infection of mouse macrophages by Toxoplasma gondii renders the cells resistant to proinflammatory effects of LPS triggering. In this study, we show that cell invasion is accompanied by rapid and sustained activation of host STAT3. Activation of STAT3 did not occur with soluble T. gondii extracts or heat-killed tachyzoites, demonstrating a requirement for live parasites. Parasite-induced STAT3 phosphorylation and suppression of LPS-triggered TNF-alpha and IL-12 was intact in IL-10-deficient macrophages, ruling out a role for this anti-inflammatory cytokine in the suppressive effects of T. gondii. Most importantly, Toxoplasma could not effectively suppress LPS-triggered TNF-alpha and IL-12 synthesis in STAT3-deficient macrophages. These results demonstrate that T. gondii exploits host STAT3 to prevent LPS-triggered IL-12 and TNF-alpha production, revealing for the first time a molecular mechanism underlying the parasite's suppressive effect on macrophage proinflammatory cytokine production.  相似文献   

4.
Infection of mouse macrophages with Toxoplasma gondii elicits MAPK activation and IL-12 production, but host cell signaling pathways have not been clearly delineated. Here, we compared macrophage signaling in response to high virulence type I (RH) vs low virulence type II (ME49) strain infection. Tachyzoites of both strains induced p38 MAPK-dependent macrophage IL-12 release, although ME49 elicited 2- to 3-fold more cytokine than RH. IL-12 production was largely restricted to infected cells in each case. RH-induced IL-12 release did not require MyD88, whereas ME49-triggered IL-12 production was substantially dependent on this TLR/IL-1R adaptor molecule. MyD88 was also not required for RH-stimulated p38 MAPK activation, which occurred in the absence of detectable upstream p38 MAPK kinase activity. In contrast, ME49-driven p38 MAPK activation displayed an MyD88-dependent component. This parasite strain also induced MyD88-dependent activation of MKK4, an upstream activator of p38 MAPK. The results suggest that RH triggers MAPK activation and IL-12 production using MyD88-independent signaling, whereas ME49 uses these pathways as well as MyD88-dependent signaling cascades. Differences in host signaling pathways triggered by RH vs ME49 may contribute to the high and low virulence characteristics displayed by these parasite strains.  相似文献   

5.
6.
IL-1 receptor-associated kinase modulates host responsiveness to endotoxin   总被引:19,自引:0,他引:19  
Endotoxin triggers many of the inflammatory, hemodynamic, and hematological derangements of Gram-negative septic shock. Recent genetic studies in mice have identified the Toll-like receptor 4 as the transmembrane endotoxin signal transducer. The IL-1 intracellular signaling pathway has been implicated in Toll-like receptor signal transduction. LPS-induced activation of the IL-1 receptor-associated kinase (IRAK), and the influence of IRAK on intracellular signaling and cellular responses to endotoxin has not been explored in relevant innate immune cells. We demonstrate that LPS activates IRAK in murine macrophages. IRAK-deficient macrophages, in contrast, are resistant to LPS. Deletion of IRAK disrupts several endotoxin-triggered signaling cascades. Furthermore, macrophages lacking IRAK exhibit impaired LPS-stimulated TNF-alpha production, and IRAK-deficient mice withstand the lethal effects of LPS. These findings, coupled with the critical role for IRAK in IL-1 and IL-18 signal transduction, demonstrate the importance of this kinase and the IL-1/Toll signaling cassette in sensing and responding to Gram-negative infection.  相似文献   

7.
Endotoxin tolerance reprograms Toll-like receptor 4 responses by impairing LPS-elicited production of pro-inflammatory cytokines without inhibiting expression of anti-inflammatory or anti-microbial mediators. In septic patients, Toll-like receptor tolerance is thought to underlie decreased pro-inflammatory cytokine expression in response to LPS and increased incidence of microbial infections. The impact of endotoxin tolerance on recruitment, post-translational modifications and signalosome assembly of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, TNF receptor-associated factor (TRAF) 6, TGF-β-activated kinase (TAK) 1, and IκB kinase (IKK) γ is largely unknown. We report that endotoxin tolerization of THP1 cells and human monocytes impairs LPS-mediated receptor recruitment and activation of IRAK4, ablates K63-linked polyubiquitination of IRAK1 and TRAF6, compromises assembly of IRAK1-TRAF6 and IRAK1-IKKγ platforms, and inhibits TAK1 activation. Deficiencies in these signaling events in LPS-tolerant cells coincided with increased expression of A20, an essential deubiquitination enzyme, and sustained A20-IRAK1 associations. Overexpression of A20 inhibited LPS-induced activation of NF-κB and ablated NF-κB reporter activation driven by ectopic expression of MyD88, IRAK1, IRAK2, TRAF6, and TAK1/TAB1, while not affecting the responses induced by IKKβ and p65. A20 shRNA knockdown abolished LPS tolerization of THP1 cells, mechanistically linking A20 and endotoxin tolerance. Thus, deficient LPS-induced activation of IRAK4 and TAK1, K63-linked polyubiquitination of IRAK1 and TRAF6, and disrupted IRAK1-TRAF6 and IRAK1-IKKγ assembly associated with increased A20 expression and A20-IRAK1 interactions are new determinants of endotoxin tolerance.  相似文献   

8.
Fms-like tyrosine kinase-3 ligand (Flt-3L) stimulates the differentiation of bone marrow cells into dendritic cells (DCs) and was used as an adjuvant therapy in the experimental model of burn wound sepsis. In this study, we describe the phenotypical characteristics of an Flt-3L-dependent DC culture (FLDC) system following LPS stimulation, which induces an inflammatory response, and after a second LPS stimulation, which induces tolerance. Priming of FLDCs with LPS via TLR4 has been shown to induce the activation of all three mitogen-activated protein kinase (MAPK) families and enhance NF-κB complex translocation into the nucleus. Stimulated FLDCs express all maturation markers and exhibit an increase in IL-12p40 production and to a lesser extent, IL-10 production. In contrast, LPS stimulation of tolerized FLDCs was not associated with TLR4 up-regulation and led to MAPK inhibition. The decrease in p38 and JNK activation was correlated with an impairment of IL-12p40 production. Endotoxin tolerance in FLDCs was associated with enhanced ERK1/2 activation, an increase in MKP-1 phosphatase expression, a decrease in NF-κB translocation to the nucleus and an increase in IL-10 production. Overall, DCs generated from bone marrow with Flt-3 ligand have similar characteristics to DC subtypes found in the steady state in vivo, which can acquire endotoxin tolerance in some circumstances.  相似文献   

9.
Mast cells secrete multiple cytokines and play an important role in allergic inflammation. Although it is widely accepted that bacteria infection occasionally worsens allergic airway inflammation, the mechanism has not been defined. In this study, we show that LPS induced Th2-associated cytokine production such as IL-5, IL-10, and IL-13 from mast cells and also synergistically enhanced production of these cytokines induced by IgE cross-linking. LPS-mediated Th2-type cytokine production was abolished in mouse bone marrow-derived mast cells derived from C3H/HeJ mice, suggesting that Toll-like receptor 4 is essential for the cytokine production. Furthermore, we found that mitogen-activated protein kinases including extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 kinase were activated by LPS stimulation in bone marrow-derived mast cells. Inhibition of extracellular signal-regulated kinase activation has little effect on LPS-mediated cytokine production. In contrast, inhibition of c-Jun N-terminal kinase activation significantly suppressed both IL-10 and IL-13 expression at both mRNA and protein levels. Interestingly, although inhibition of p38 did not down-regulate the mRNA induction, it moderately decreased all three cytokine productions by LPS. These results indicate that LPS-mediated production of IL-5, IL-10, and IL-13 was distinctly regulated by mitogen-activated protein kinases. Our findings may indicate a clue to understanding the mechanisms of how bacteria infection worsens the clinical features of asthma.  相似文献   

10.
Toll-like receptors (TLR) that signal through the common adaptor molecule myeloid differentiation factor 88 (MyD88) are essential in proinflammatory cytokine responses to many microbial pathogens. In this study we report that Toxoplasma gondii triggers neutrophil IL-12 and chemokine ligand 2 (CCL2; monocyte chemoattractant protein 1) production in strict dependence upon functional MyD88. Nevertheless, the responses are distinct. Although we identify TLR2 as the receptor triggering CCL2 production, parasite-induced IL-12 release did not involve this TLR. The production of both IL-12 and CCL2 was increased after neutrophil activation with IFN-gamma. However, the synergistic effect of IFN-gamma on IL-12, but not CCL2, was dependent upon Stat1 signal transduction. Although IL-10 was a potent down-regulator of Toxoplasma-triggered neutrophil IL-12 release, the cytokine had no effect on parasite-induced CCL2 production. Soluble tachyzoite Ag fractionation demonstrated that CCL2- and IL-12 inducing activities are biochemically distinct. Importantly, Toxoplasma cyclophilin-18, a molecule previously shown to induce dendritic cell IL-12, was not involved in neutrophil IL-12 production. Our results show for the first time that T. gondii possesses multiple molecules triggering distinct MyD88-dependent signaling cascades, that these pathways are independently regulated, and that they lead to distinct profiles of cytokine production.  相似文献   

11.
p38MAPK介导的胶质细胞iNOS的转录激活机制   总被引:6,自引:2,他引:4  
丝裂原激活蛋白激酶(MAPK)酶级联反应系统参与胶质细胞中iNOS的合成.通过瞬时转染p38MAPK途径中上游激酶,MAPK激酶3(MKK3)和MAPK激酶6 (MKK6 )表达质粒,进一步了解p38MAPK级联传导信号系统调节iNOS基因在胶质细胞中的转录激活机制.MKK3或MKK6表达质粒与接有荧光素酶(luciferase ,Luc)的大鼠iNOS启动基因质粒(iNOS Luc)联合转染C6星形胶质细胞株引起iNOS Luc的激活,并且使细胞因子诱导的iNOSmRNA的表达增强.这两种效应都能够被p38MAPK抑制剂SB2 0 35 80所抑制.MKK3 6也可以诱导核因子κB(NFκB Luc)依赖的转录活性.这些分子水平的研究结果为p38MAPK信号级联传导途径在调节大鼠胶质细胞中iNOS基因转录激活中的重要作用,包括转录因子NFκB的作用提供了证据.通过阻断iNOS表达或NO的生成,抑制细胞炎症发生,为防治神经细胞炎症反应性疾病提供实验依据.  相似文献   

12.
Prior exposure to LPS induces a transient state of cell refractoriness to subsequent LPS restimulation, known as endotoxin tolerance. Induction of LPS tolerance has been reported to correlate with decreased cell surface expression of the LPS receptor complex, Toll-like receptor 4 (TLR4)/MD-2. However, other results have underscored the existence of mechanisms of LPS tolerance that operate downstream of TLR4/MD-2. In the present study we sought to delineate further the molecular basis of LPS tolerance by examining the TLR4 signaling pathway in endotoxin-tolerant cells. Pretreatment of human monocytes with LPS decreased LPS-mediated NF-kappaB activation, p38 mitogen-activated protein kinase phosphorylation, and TNF-alpha gene expression, documenting the induction of endotoxin tolerance. FACS and Western blot analyses of LPS-tolerant monocytes showed increased TLR2 expression, whereas TLR4 expression levels were not affected. Comparable levels of mRNA and protein for myeloid differentiation factor 88 (MyD88), IL-1R-associated kinase 1 (IRAK-1), and TNFR-associated factor-6 were found in normal and LPS-tolerant monocytes, while MD-2 mRNA expression was slightly increased in LPS-tolerant cells. LPS induced the association of MyD88 with TLR4 and increased IRAK-1 activity in medium-pretreated cells. In LPS-tolerant monocytes, however, MyD88 failed to be recruited to TLR4, and IRAK-1 was not activated in response to LPS stimulation. Moreover, endotoxin-tolerant CHO cells that overexpress human TLR4 and MD-2 also showed decreased IRAK-1 kinase activity in response to LPS despite the failure of LPS to inhibit cell surface expression of transfected TLR4 and MD-2 proteins. Thus, decreased TLR4-MyD88 complex formation with subsequent impairment of IRAK-1 activity may underlie the LPS-tolerant phenotype.  相似文献   

13.
In this study, the effect of Lactobacillus plantarum lipoteichoic acid (pLTA) on LPS-induced MAPK activation, NF-kappaB activation, and the expression of TNF-alpha and IL-1R-associated kinase M (IRAK-M) was examined. The expression of the pattern recognition receptor and the survival rate of mice were also examined. pLTA pretreatment inhibited the phosphorylation of ERK, JNK, and p38 kinase. It also inhibited the degradation of IkappaBalpha and IkappaBbeta, as well as the activation of the LPS-induced TNF-alpha factor in response to subsequent LPS stimulation. These changes were accompanied by the suppression of the LPS-induced expression of TLR4, NOD1, and NOD2, and the induction of IRAK-M, with a concurrent reduction of TNF-alpha secretion. Furthermore, the overexpression of pattern recognition receptors such as TLR4, NOD1, and NOD2 and the degradation of IRAK-M by transient transfection were found to reinstate the production of TNF-alpha after LPS restimulation. In addition, the i.p. injection of pLTA suppressed fatality, and decreased the level of TNF-alpha in the blood, in LPS-induced endotoxin shock mice. In conclusion, these data extend our understanding of the pLTA tolerance mechanism, which is related to the inhibition of LPS-induced endotoxin shock, and suggest that pLTA may have promise as a new therapeutic agent for LPS-induced septic shock.  相似文献   

14.
In the present study, we tested our hypothesis that atorvastatin exerts its anti-inflammation effect via suppressing LPS-induced rapid upregulation of Toll-like receptor 4 (TLR4) mRNA and its downstream p38, ERK, and NF-κB signaling pathways in human umbilical-vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). TLR4 mRNA expression and its downstream kinase activities induced by LPS alone or atorvastatin + LPS in endothelial cells were quantified using quantitative real-time PCR and enzyme-linked immunosorbent assay. Preincubation of LPS-stimulated endothelial cells with TLR4 siRNA was conducted to identify the target of the anti-inflammatory effects of atorvastatin. Atorvastatin incubation resulted in the reduction of LPS-induced TLR4 mRNA expression, ERK1/2 and P38 MAPK phosphorylation, and NF-κB binding activity. Pretreatment with MEK/ERK1/2 inhibitor PD98059 attenuated atorvastatin + LPS-induced NF-κB activity but had no effect on P38 MAPK phosphorylation. In contrast, pretreatment with P38 MAPK inhibitor SB203580 resulted in upregulation of atorvastatin + LPS-induced ERK1/2 phosphorylation but had no significant effects on NF-κB activity. On the other hand, blocking NF-κB with SN50 produced no effects on atorvastatin + LPS-induced ERK1/2 and P38 MAPK phosphorylation. Moreover, TLR4 gene silencing produced the same effects as the atorvastatin treatment. In conclusion, atorvastatin downregulated TLR4 mRNA expression by two distinct signaling pathways. First, atorvastatin stabilized Iκ-Bα, which directly inhibited NF-κB activation. Second, atorvastatin inactivated ERK phosphorylation, which indirectly inhibited NF-κB activation. Suppression of p38 MAPK by atorvastatin upregulates ERK but exerts no effect on NF-κB.  相似文献   

15.
The costimulatory molecule B7.2 (CD86) plays a vital role in immune activation and development of Th responses. The molecular mechanisms by which B7.2 expression is regulated are not understood. We investigated the role of mitogen-activated protein kinases (MAPK) in the regulation of B7.2 expression in LPS-stimulated human monocytic cells. LPS stimulation of human monocytes resulted in the down-regulation of B7.2 expression that could be abrogated by anti-IL-10 Abs. Furthermore, SB202190, a specific inhibitor of p38 MAPK, inhibited LPS-induced IL-10 production and reversed B7.2 down-regulation, suggesting that LPS-induced B7.2 down-regulation may be mediated, at least in part, via regulation of IL-10 production by p38 MAPK. In contrast to human promonocytic THP-1 cells that are refractory to the inhibitory effects of IL-10, LPS stimulation enhanced B7.2 expression. This IL-10-independent B7.2 induction was not influenced by specific inhibitors of either p38 or p42/44 MAPK. To ascertain the role of the c-Jun N-terminal kinase (JNK) MAPK, dexamethasone, an inhibitor of JNK activation, was used, which inhibited LPS-induced B7.2 expression. Transfection of THP-1 cells with a plasmid expressing a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase 1 significantly reduced LPS-induced B7.2 expression, thus confirming the involvement of JNK. To study the signaling events downstream of JNK activation, we show that dexamethasone did not inhibit LPS-induced NF-kappaB activation in THP-1 cells, suggesting that JNK may not be involved in NF-kappaB activation leading to B7.2 expression. Taken together, our results reveal the distinct involvement of p38 in IL-10-dependent, and JNK in IL-10-independent regulation of B7.2 expression in LPS-stimulated monocytic cells.  相似文献   

16.
Cytokines generated from macrophages contribute to pathogenesis of inflammation-associated diseases. Here we show that γ-tocotrienol (γ-TE), a natural vitamin E form, inhibits lipopolysaccharide (LPS)-induced interleukin (IL)-6 production without affecting tumor necrosis factor α (TNF-α), IL-10 or cyclooxygenase-2 (COX-2) up-regulation in murine RAW264.7 macrophages. Mechanistic studies indicate that nuclear factor κB (NF-κB), but not c-Jun NH(2)-terminal protein kinase, p38 or extracellular signal-regulated kinase mitogen-activated protein kinases (MAPKs), is important to IL-6 production and that γ-TE treatment blocks NF-κB activation. In contrast, COX-2 appears to be regulated by p38 MAPK in RAW cells, but γ-TE has no effect on LPS-stimulated p38 phosphorylation. Despite necessary for IL-6, NF-κB activation by TNF-α or other cytokines is not sufficient for IL-6 induction with exception of LPS. CCAAT/enhancer-binding protein (C/EBP) β appears to be involved in IL-6 formation because LPS induces C/EBPβ up-regulation, which parallels IL-6 production, and knockdown of C/EBPβ with small interfering RNA results in diminished IL-6. LPS but not individual cytokines is capable of stimulating C/EBPβ and IL-6 in macrophages. Consistent with its dampening effect on IL-6, γ-TE blunts LPS-induced up-regulation of C/EBPβ without affecting C/EBPδ. γ-TE also decreases LPS-stimulated granulocyte colony-stimulating factor (G-CSF), a C/EBPβ target gene. Compared with RAW264.7 cells, γ-TE shows similar or stronger inhibitory effects on LPS-triggered activation of NF-κB, C/EPBβ and C/EBPδ and more potently suppresses IL-6 and G-CSF in bone marrow-derived macrophages. Our study demonstrates that γ-TE has antiinflammatory activities by inhibition of NF-κB and C/EBPs activation in macrophages.  相似文献   

17.
The aim of this study was to investigate the inhibitory effect of penehyclidine hydrochloride (PHC) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS) production in human endothelial cell. Cultured endothelial cells were pretreated with PHC, followed by LPS treatment. NO activity were determined. iNOS expression and p38 mitogen-activated protein kinase (p38 MAPK) protein expression were measured by Western blot analysis. LPS treatment significantly induced p38 MAPK activation, iNOS expression, and NO production, which could be attenuated by 2 μg/ml PHC pretreatment. Furthermore, our study showed LPS-induced NO production and iNOS expression were suppressed by p38 MAPK inhibitor SB203580 pretreatment. We concluded that PHC attenuates NO production and iNOS expression by suppressing the activation of p38 MAPK pathway, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced endothelial cell injury.  相似文献   

18.
The control of IL-10 production in Toll-like receptor (TLR) signals remains to be elucidated. Here, we report that β-arrestin 2 positively regulates TLR-triggered IL-10 production in a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. In vitro studies with cells including peritoneal macrophages and HEK293/TLR4 cells have demonstrated that β-arrestin 2 forms complexes with p38 and facilitates p38 activation after lipopolysaccharide (LPS) stimulation. Deficiency of β-arrestin 2 and inhibition of p38 MAPK activity both ameliorate TLR4-stimulated IL-10 response. Additionally, in vivo experiments show that mice lacking β-arrestin 2 produce less amount of IL-10, and are more susceptible to LPS-induced septic shock which is further enhanced by blocking IL-10 signal. These results reveal a novel mechanism by which β-arrestin 2 negatively regulates TLR4-mediated inflammatory reactions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号