首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Peripheral blood lymphocytes (PBL) from chronic myeloid leukemia (CML) patients in remission were stimulated in vitro, in a 3-cell assay with autologous leukemic cells or autologous bone marrow (BM) cells alone, or each in combination with allogeneic PBL. The responder cells were used as effectors in a 4-h 51Cr release cytotoxicity assay using autologous targets such as leukemic cells, BM cells, phytohemagglutinin-induced lymphoblasts, and allogeneic K562 (erythroblastoid leukemic cell line) target cells. Sensitization of lymphocytes from CML patients with either autologous leukemic cells or BM cells generated cytotoxic cells (CTCs) capable of killing both the targets. These results suggested that in CML, the PBL may have been sensitized to myeloid maturation-related antigens in vivo, which, on secondary stimulation in vitro, may result in differentiation of CTCs cytotoxic to immature myeloid cells, either from autologous leukemic cells or autologous BM. The inability of PBL from patients with oral cancers to lyse autologous BM cells upon in vitro stimulation, supported this possibility. Clonogenic assays conducted to assess the colony forming potential of BM cells which had interacted with CTCs indicated that there was about 37% reduction in committed granulocyte stem cell colony formation without an appreciable change in committed granulocyte/monocyte stem cell units and clusters. Therefore, since the BM toxicity of the CTCs is not very high, these cells may have a potential clinical use in CML.  相似文献   

2.
To characterize the anti-melanoma reactivity of CD8+ cytotoxic T lymphocytes (CTL) from choroidal melanoma patients, CTL clones were isolated from the peripheral blood of three patients after mixed lymphocyte/tumor cell culture (MLTC). Clones were derived from lymphocytes stimulated by allogeneic (OCM-1, A24, A28) or autologous (OCM-3, Al, A30) melanoma cells. Their reactivity against a panel of HLA-typed melanoma and nonmelanoma cells was assessed, to determine whether a single CTL clone could recognize and lyse a variety of allogeneic melanoma cell lines. While proportionately more clones derived from autologous MLTC were melanoma-specific than allogeneic MLTC (42% versus 14%), melanoma-specific CTL were recovered from both. Notably, a novel melanoma specificity was identified. These CTL clones were termed non-fastidious because they were capable of lysing melanoma cells with which they had no HLA class I alleles in common. Nonetheless, lysis was mediated by the HLA class I molecule. Since lysis was specific for melanoma cells, these CTL appeared to recognize a shared melanoma peptide(s). Because of their prevalence, we propose that non-fastidious CTL are integral to human anti-melanoma T cell immunity. This reinforces clinical findings that allogeneic melanomas can substitute for autologous tumors in active specific immunotherapy. By circumventing the need for autologous melanoma, it is possible to treat patients after removal of the primary choroidal melanoma in an attempt to prevent metastasis.Supported by USPHS grants EY-09031 and EY-09427, and the Lucy Adams Choroidal Melanoma Research Fund to J. K.-M.  相似文献   

3.
We have approached the challenge of generating a primary T cell response to Epstein-Barr virus (EBV) in vitro by stimulating naive T cells with the autologous EBV-transformed lymphoblastoid cell line (LCL), a rich source of EBV-associated cytotoxic T lymphocyte (CTL) epitopes. Responsive T cells from three EBV-seronegative donors were cloned in agarose, phenotyped for T cell markers by flow cytometry, and their cytotoxic properties analyzed in the 51Cr release assay. Most clones (greater than 95%) expressed the CD4 phenotype and 59% of these clones showed cytotoxic properties. The dominant CTL response was specific for FCS-associated epitopes presented by FCS-grown autologous LCL target cells and was restricted by class II HLA antigens. Other clonal components included: (i) an EBV-specific response by HLA-restricted CD4 CTL clones that did not discriminate between A- and B-type EBV transformants; (ii) an EBV-specific response by an HLA-restricted CD4 CTL clone that discriminated between A- and B-type transformants, and (iii) a nonspecific cytotoxic response by CD3+,4+,8-, CD3+,4-,8-, and CD3-,4-,8- clones that were broadly allotypic or restricted to the lysis of K562 target cells. The EBV-specific CTL clones did not lyse the autologous EBV-negative B or T cell blasts and their specificity patterns of lysis were supported by the cold target competition data. These studies highlight the role of CD4 CTL in the establishment in vitro of a primary immune response to a human virus.  相似文献   

4.
Human peripheral blood lymphocytes (PBL), from anti-Epstein-Barr virus (EBV)-seropositive donors, were stimulated by EBV and were shown to be cytotoxic toward autologous, HLA-compatible, and fully allogeneic EBV-transformed target cells. The lysis was not due to natural killer (NK) cells since the target cells used were resistant to lysis by fresh PBL and by virus-stimulated PBL-depleted of AET-SRBC-rosetting T cells (the latter being still fully cytotoxic on K562 NK-susceptible target cells). Conversely only E-rosette-purified (T) lymphocytes killed EBV-transformed HLA-compatible and allogeneic target cells. Moreover, anti-MHC antibodies inhibited the cytotoxicity exerted by EBV-induced cytotoxic T lymphocytes (CTL) on both autologous and allogeneic target cells. Finally the lysis was EBV specific since PHA blasts were not killed and since only EBV-transformed cells could compete for lysis with the EBV-positive target cells. Efficient competition was achieved by EBV-transformed cells autologous or allogeneic to the targets, even when effector and target cells were fully allogeneic. All together, the data suggest that human anti-EBV CTL may recognize nonpolymorphic HLA determinants on the target cells in association with the virus-induced antigens.  相似文献   

5.
In vitro stimulation of human mononuclear cells with x-irradiated autologous lymphoblastoid cell line (LCL) or allogeneic normal cells in mixed leukocyte cultures (MLC) was previously shown to result in the generation of OKT3+ OKT8+ cytotoxic T lymphocytes (CTL) lytic for allogeneic and autologous LCLs and also of natural killer- (NK) like cells that are OKT3- and primarily OKT8- and are lytic for HLA- NK-sensitive K562 cells. The origin of the NK-like cells was not previously known because, although the majority of fresh human NK cells react with monoclonal antibodies OKM1 and B73.1, lymphocytes bearing these markers are not detected several days after the onset of MLC, when NK-like cells are present. In this study, experiments were undertaken to determine whether NK-like cells generated after stimulation with x-irradiated pooled allogeneic normal cells (poolx) or with autologous LCL are derived from cells expressing antigens reactive with monoclonal antibodies OKM1 or B73.1, which react with fresh NK cells. Mononuclear cells, depleted of monocytes, were stained with OKM1 or B73.1 and fluorescein-labeled goat anti-mouse IgG. Lymphocytes depleted of OKM1+ or B73.1+ cells, by fluorescence-activated cell sorting, and lymphocytes that were stained but not sorted were stimulated for 7 days with either poolx or autologous LCL. The generation of NK-like activity was decreased at least 90% after depletion of cells reactive with OKM1 or B73.1, whereas the generation of CTL against autologous and allogeneic LCL was minimally affected. These findings show that NK-like cells generated in MLC are derived from cells that express the phenotype of fresh NK cells (OKM1+ or B73.1+) and that CTL can be generated in cultures in which relatively little NK-like activity is concomitantly detected, by depleting NK cells with monoclonal antibodies before stimulation.  相似文献   

6.
Summary Chronic myelogenous leukemia (CML) patients in chronic phase display compromised lymphokine-activated killer (LAK) cell induction, which is partly restored after therapy with interferon . However, the relative resistance of the leukemic cells from these patients to autologous or allogeneic LAK lysis is not affected by this treatment. In an attempt to render CML cells more susceptible to lysis or cytostasis, they were precultured in serum-free medium with or without recombinant growth factors. In eight patients studied, interleukin-3 (IL-3) significantly enhanced the spontaneous short-term (6-day) proliferation of CML cells, with retention of ability to form colonies in methylcellulose. Culture in either medium alone or IL-3 led to a significant enrichment of CD14+ and CD33+ cells but to a reduction in CD34+ cells. In contrast, culture of the same cells in IL-2 (to generate autologous LAK activity) resulted in a loss of CD14+ and CD33+ as well as CD34+ cells but in a significant increase in CD3+ and CD56+ cells. Despite similarities in their phenotypes, IL-3 cultured cells but not those cultured in medium alone acquired susceptibility to lysis by the IL-2-cultured autologous LAK cells. These results may have significance for the design of novel combination immunotherapy in CML.This work was supported in part by the Deutsche Forschungsgemeinschaft (SFB 120)  相似文献   

7.
8.
Fas ligand (FasL) has been implicated in cytotoxic T lymphocyte (CTL)- and natural killer (NK) cell-mediated cytotoxicity. In the present study, we investigated the localization of FasL in murine CTL and NK cells. Immunocytochemical staining showed that FasL was stored in cytoplasmic granules of CD8+ CTL clones and in vivo activated CTL and NK cells, where perforin and granzyme A also resided. Immunoelectron microscopy revealed that FasL was localized on outer membrane of the cytoplasmic granules, while perforin was localized in internal vesicles. Western blot analysis showed that the membrane-type FasL of 40 kDa was stored in CD8+ CTL clones but not in CD4+ CTL clones. By utilizing a granule exocytosis inhibitor (TN16), we demonstrated that FasL translocated onto cell surface upon degranulation of anti-CD3-stimulated CD8+ CTL clones. Moreover, TN16 markedly inhibited the FasL-mediated cytotoxicity by CD8+ T cell clones and NK cells. These results suggested a substantial contribution of FasL to granule exocytosis-mediated target cell lysis by CD8+ CTL and NK cells.  相似文献   

9.
Umbilical cord blood (CB) is increasingly used for allogeneic hematopoietic stem cell transplantation. To determine whether viral antigen-specific cytotoxic T-lymphocytes (CTL) could be generated from the predominantly naive T-cell populations in CB, CB-derived mononuclear cells were stimulated with autologous Epstein-Barr virus (EBV) transformed B-lymphoblastoid cell lines over several weeks in the presence of recombinant human interleukin-2 (IL-2). By 28 days of culture, T-lymphocytes from all six CB that had been treated with IL-2 displayed EBV-specific cytotoxicity. These cells were largely CD4(+), with complete inhibition of cytotoxicity by anti-CD3 and variable inhibition by anti-HLA DR monoclonal antibodies. The EBV-specific effectors were cloned by limiting dilution, and most of the CTL clones were CD4(+). The cytotoxicity of the CB-derived CD4(+) CTL clones was inhibited by EGTA but not by anti-Fas ligand mAb, suggesting that this cytotoxicity was mediated by perforin/granzyme B. These data indicate that virus-specific CTL can be cultivated and cloned from CB, a human T-cell source that may not have prior in vivo antigenic exposure or reactivity. This finding may have applications in adoptive immunotherapy to recipients of CB transplants.  相似文献   

10.
Primary infection with EBV during acute infectious mononucleosis (IM) is associated with a cytotoxic response against allogeneic target cells. C depletion with anti-CD3 (OKT3) and anti-CD8 (OKT8) mAb decreased the allogeneic cytolysis of two EBV-infected lymphoblastoid cell lines (LCL) by 96% and 89%, respectively. Complement depletion with the NK cell-specific mAb Leu-11b and NKH-1a resulted in only a slight decrease (less than 35%) in the lysis of these LCL. mAb inhibition studies with OKT3 and OKT8 inhibited the allogeneic lysis of two LCL by 87% and 82%, respectively. The alloreactive cytotoxic response was strongly inhibited by mAb specific for MHC class I determinants (W6/32, 65% inhibition and BBM.1, 58% inhibition). Acute IM lymphocytes lysed the allogeneic EBV-negative cell lines HSB2 (45%) and HTLV-1 T cell lines (16%). NK cell-depleted lymphocytes from an acute IM patient demonstrated preferential lysis of K562 transfected with human HLA-A2 (73%) compared with the K562 transfected control (20%). Cold target competition studies with allogeneic and autologous target and competitor LCL demonstrated no significant competitive inhibition between allogeneic and autologous cells. We interpret these results as evidence that 1) the acute IM-alloreactive cytotoxic response is mediated primarily by CTL; 2) these alloreactive CTL lyse allogeneic target cells irrespective of EBV antigenic expression; 3) MHC class I expression is sufficient for allogeneic recognition and lysis of target cells; 4) distinct effector CTL populations mediate lysis of autologous and allogeneic target cells; and 5) during acute IM, EBV infection results in the induction of both virus-specific and alloreactive CTL populations.  相似文献   

11.
Two interleukin-2 (IL-2)-dependent cytotoxic T-cell clones were obtained by limiting dilution from a lymphocyte culture stimulated in vitro with the autologous Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) in the presence of fetal calf serum (FCS). Both clones uniformly had a T3+, T4+, Dr+ phenotype and lysed autologous B blasts, the autologous LCL, and allogeneic B cell lines sharing major histocompatibility complex (MHC) class II antigens. The cytotoxic function was triggered by FCS-derived components. There was no killing if the sensitive targets were cultured in serum-free medium or in medium supplemented with human serum. Sensitivity to lysis could be restored by exposing the targets to FCS for at least 6 hr at 37 degrees C. Monoclonal antibodies directed to T-cell-specific surface antigens and MHC class II antigens inhibited lysis with different efficiencies depending on the target cell origin. Killing of Burkitt's lymphoma (BL)-derived cell lines was blocked more easily than killing of LCLs. LCLs but not BL lines induced proliferation of the T-cell clones in the absence of exogenous IL-2. The differences were not related to quantitative variations in the expression of MHC class II antigens, indicating that BL lines differ from LCLs in other cell membrane properties that may influence antigen presentation. The results suggest that the affinity of effector/target binding, which is probably influenced by the concentration of antigenic determinants expressed on the target cell membrane, determines whether proliferative responses or cytotoxicity are induced in the antigen-recognizing T cells.  相似文献   

12.
Activation of peripheral blood lymphocytes (PBL) from a melanoma patient either in secondary MLC in which EBV-transformed B cells from the cell line JY were used as stimulator cells, or by co-cultivation with the autologous melanoma cells in a mixed leukocyte tumor cell culture (MLTC) resulted in the generation of cytotoxic activity against the autologous melanoma (O-mel) cells. From these activated bulk cultures four cloned cytotoxic T lymphocyte (CTL) lines were isolated. The CTL clone O-1 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+), and O-36 (T3+, T4-, T8+, OKM-, HNK-, and HLA-DR+) were obtained from MLC, whereas the CTLC clones O-C7 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+) and O-D5 (T3+, T4-, T8+, OKM-1-, HNK, and HLA-DR+) were isolated from autologous MLTC. All four CTL clones were strongly cytotoxic for O-mel cells but failed to lyse autologous fibroblasts and autologous T lymphoblasts. Moreover, the CTL clones lacked NK activity as measured against K562 and Daudi cells. Panel studies indicated that the CTL clones also killed approximately 50% of the allogeneic melanoma cells preferentially, whereas the corresponding T lymphoblasts were not lysed. Monoclonal antibodies against class I (W6/32) and class II (279) MHC antigens failed to block the reactivity of the CTL clones against O-mel and allogeneic melanoma cells, indicating that a proportion of human melanoma cells share determinants that are different from HLA antigens and that are recognized by CTL clones. In contrast to the CTL clones isolated from MLTC, the clones obtained from MLC also lysed JY cells, which initially were used as stimulator cells. The reactivity of O-36 against JY could be inhibited with W6/32, demonstrating that this reactivity was directed against class I MHC antigens. These results suggest that the lysis of O-mel and JY cells by O-36 has to be attributed to two independent specificities of this CTL clone. The specificity of the other cross-reactive CTL clone (O-1) could not be determined. The notion that individual CTL clones can have two specificities was supported by the following observations. The cytotoxic reactivity of both O-1 (T4+) and O-36 (T8+) against JY was blocked by monoclonal antibodies directed against T3 and human LFA-1, and against T3, T8, and human LFA-1, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Natural killer (NK) cells have been implicated in defense against malignancies, especially leukemia. Because patients with leukemia and preleukemic disorders manifest low NK activity, it is possible that NK cell impairment may contribute to leukemogenesis. In view of this possibility, it was important to characterize the NK cell defect of leukemic patients and to design new approaches for its correction. Analysis of the mechanism of NK cell defect demonstrated that NK cells of leukemic patients were impaired in their tumor-binding and lytic activity and did not display ability to recycle or to produce cytotoxic factor. However, deficient NK activity could be corrected by culture of peripheral blood effector cells with IL 2. IL 2-activated NK cells manifested restoration of all measured parameters of the cytotoxic mechanism, as exemplified by normalized tumor-binding and lytic activity, as well as the rate of lysis and ability to recycle. Importantly, such in vitro stimulated cytotoxic cells displayed reactivity against fresh leukemic cells of autologous as well as allogeneic origin. Another interesting observation from these studies was that the NK activity was also induced in the leukemic bone marrow, a tissue with a very low frequency of cytotoxic NK cells. It is important to note that cultured NK cells did not represent a stationary cell population, but proliferated in vitro quite actively (doubling time 3 to 6 days) for at least 5 wk. Characterization of the in vitro generated cytotoxic cells indicated that these cells displayed large granular lymphocyte morphology and CD16 and Leu-19 cell surface phenotype. Our data demonstrate that the NK cell defect of leukemic patients is not a permanent phenomenon, but can be reversed in culture with IL 2, and that fully cytotoxic NK cells can be maintained and expanded in vitro. Thus, it is reasonable to suggest that adoptive transfer of autologous NK cells to the patients may represent a promising new therapy for treatment of leukemia.  相似文献   

14.
BACKGROUND: The adoptive transfer of ex vivo-induced tumor-specific T-cell lines provides a promising approach for cancer immunotherapy. We have demonstrated previously the feasibility of inducing in vitro long-term anti-tumor cytotoxic T-cell (CTL) lines directed against different types of solid tumors derived from both autologous and allogeneic PBMC. We have now investigated the possibility of producing large amounts of autologous anti-tumor CTL, in compliance with good manufacturing practices, for in vivo use. METHODS: Four patients with advanced solid tumors (two sarcoma, one renal cell cancer and one ovarian cancer), who had received several lines of anticancer therapy, were enrolled. For anti-tumor CTL induction, patient-derived CD8-enriched PBMC were stimulated with DC pulsed with apoptotic autologous tumor cells (TC) as the source of tumor Ag. CTL were then restimulated in the presence of TC and expanded in an Ag-independent way. RESULTS: Large amounts of anti-tumor CTL (range 14-20 x 10(9)), which displayed high levels of cytotoxic activity against autologous TC, were obtained in all patients by means of two-three rounds of tumor-specific stimulation and two rounds of Ag-independent expansion, even when a very low number of viable TC was available. More than 90% of effector cells were CD3(+) CD8(+) T cells, while CD4(+) T lymphocytes and/or NK cells were less than 10%. DISCUSSION: Our results demonstrate the feasibility of obtaining large quantities of anti-tumor specific CTL suitable for adoptive immunotherapy approaches.  相似文献   

15.
The role of uncultured melanoma cells in the proliferation of autologous tumor-specific cytotoxic T lymphocytes (CTLs) was investigated. Uncultured autologous tumor cells by themselves induced modest, but significant, proliferation in 10 of 13 (77%) CTL clones and in only two of nine non-CTL clones. Uncultured allogenic melanoma cells mostly failed to induce CTL proliferation. Autologous tumor-induced CTL proliferation declined with increasing age of the culture. It did not correlate with IL-2 receptor-alpha expression or was not inhibited by addition of anti-IL-2 antibody to the culture. It was inhibited by pretreatment of tumor cells with anti-MHC class II, but not -MHC class I mAb. IL-2 alone was sufficient for the potent proliferation of five of nine CTL clones. In all these five CTL clones, autologous tumor cells suppressed IL-2-induced proliferation. The remaining four CTL clones, however, required both uncultured autologous melanoma cells and IL-2 for the proliferation. IL-4 or IL-6, in particular IL-6, facilitated IL-2-induced CTL proliferation, but not their cytotoxicity. In summary, uncultured melanoma cells by themselves induced modest levels of CTL proliferation in the context of MHC class II antigens, whereas they suppressed IL-2-induced CTL proliferation in more than half of the clones.  相似文献   

16.
Human melanoma is an immunogenic neoplasm whereby enhancement of specific cell-mediated immunity can alter tumor progression. HLA-A2-restricted CTL have been demonstrated to kill allogeneic HLA-A2-matched melanoma. We investigated the ability of allogeneic melanoma cells sharing HLA-A antigens to sensitize melanoma patients' lymphocytes to induce HLA-A-restricted CTL to autologous melanoma. PBL from melanoma patients were cocultured with autologous melanoma cells in defined "cocktail medium" to generate melanoma-specific HLA-A-restricted CTL lines. CTL generated by sensitization with allogeneic melanoma bearing shared HLA-A2, A11, A24, or "cross-reactive" HLA-A antigens could kill almost as many autologous melanoma cells as CTL sensitized with autologous melanoma. There are HLA-A antigens that are immunogenically cross-reactive because they share determinant epitopes. CTL were not activated NK or LAK cells. The HLA restriction and melanoma cell specificity of the CTL were demonstrated by cold target inhibition with autologous and allogeneic melanoma and B lymphoblasts. Anti-CD3 and anti-HLA AB inhibited CTL killing of melanoma. The CTL were predominantly CD3+CD4+ TCR alpha/beta+. These studies demonstrate that melanomas being shared or cross-reactive HLA-A can be used for in vitro generation of HLA-restricted CTL that recognize melanoma-associated antigens. The findings have very important implications in human tumor immunotherapy.  相似文献   

17.
We have investigated the frequency and specificity of gamma delta+ cytotoxic lymphocyte precursors (CLP) under limiting dilution culture conditions. E rosette separated total T cells and CD3+CD4-CD8-TCR alpha beta- double-negative (DN) T cells were cocultured with allogeneic or autologous PBMC stimulator cells, and frequencies of alloreactive and autoreactive CLP were determined after 12 to 14 days against Con A blast target cells. Freshly isolated DN cells consisting of 82.3 +/- 8.2% gamma delta+ T cells did not exert cytolytic activity against K562 or anti-TCR gamma delta mAb-producing hybridoma cells. In striking contrast to E+ cells, the vast majority of alloantigen-stimulated clonally developing DN CLP did not show specificity for stimulator-derived target cells. Thus, frequencies of alloreactive and autoreactive CLP after alloantigenic stimulation were in the range of 1/100 to 1/4800 and 1/450 to 1/5000, respectively. After coculture with autologous stimulator cells, frequencies of autoreactive and alloreactive DN CLP were 1/700 to 1/2700 and 1/1360 to 1/4500, respectively. Split culture analysis revealed that most proliferating DN colonies selected for high probability of clonality simultaneously killed both autologous and HLA-mismatched allogeneic targets. The majority of the DN cells expressed the CD3+/TCR gamma delta+ phenotype after culture, and thus were not CD2+CD3- NK cells. Taken together, our results show that 1) freshly isolated peripheral blood gamma delta+ T cells lack cytotoxic activity, and 2) most cytotoxic gamma delta+ T cells activated by autologous or allogeneic stimulator cells under limiting dilution conditions do not discriminate between autologous and allogeneic targets.  相似文献   

18.
Vaccinia virus-specific cytotoxic T-lymphocyte (CTL) clones were established from a healthy donor, who had been immunized with vaccinia virus vaccine, by stimulation of peripheral blood lymphocytes with UV-inactivated vaccinia virus antigen. The phenotype of all of the clones established was CD3+ CD4+ CD8- Leu11-. We used a panel of allogenic vaccinia virus-infected B-lymphoblastoid cell lines and demonstrated that some of the clones recognized vaccinia virus epitopes presented by human leukocyte antigen (HLA) class II molecules. Monoclonal antibodies specific for either HLA-DP or HLA-DR determinant reduced the cytotoxicity of specific clones. The HLA-restricted cytotoxicity of the clones is vaccinia virus specific, because vaccinia virus-infected but not influenza virus-infected autologous target cells were lysed. Using vaccinia virus deletion mutants, we found that some of the CTL clones recognize an epitope(s) that lies within the HindIII KF regions of the vaccinia virus genome. These results indicate that heterogeneous CD4+ CTL clones specific for vaccinia virus are induced in response to infection and may be important in recovery from and protection against poxvirus infections.  相似文献   

19.
Three HSV type 1 (HSV-1) and HSV type 2 (HSV-2) common ("HSV-type common") and three HSV-1 specific CTL clones, which were CD3+, CD4+, CD8-, 4B4+, and 2H4-, were established. These clones proliferated in response to stimulation with HSV in the presence of autologous APC. The HSV type specificity of the proliferative response was identical with that of the cytotoxic activity of the clones. The cytotoxic activity and the proliferative response were both inhibited by addition of anti-HLA-DR mAb to the culture. After culture of these CTL clones with autologous B cells and macrophages followed by HSV Ag stimulation, anti-HSV antibody was detected in the culture supernatant. The HSV type specificity of the helper function for antibody production was identical with that of the cytotoxicity, i.e., HSV-type common clones, upon stimulation with either HSV-1, or HSV-2, and HSV-1-specific clones, upon stimulation with HSV-1 but not with HSV-2, showed helper activity for anti-HSV antibody production by autologous B cells. Moreover, it was found that these clones produced humoral factors which help autologous B cells to produce antibody. The helper factors were produced by T cell clones in an HSV-type-specific manner. These data suggest that some CD4+ T cells can simultaneously manifest both specific cytotoxicity and helper activity for Ag-specific antibody production by B cells, and that these multifunctional T cells might play an important role in protection against viral infection.  相似文献   

20.
One hundred thirteen HSV-specific CD4+ T cell clones were established from the PBL of a healthy person and their functional heterogeneity was investigated. All clones proliferated in response to stimulation with HSV in the presence of autologous APC. Among those, 48 clones showed cytotoxic activity to HSV-infected autologous EBV-transformed lymphoblastoid cell line, but not to HSV-infected autologous fibroblasts, HSV-infected allogeneic cells, or K562 cells (group 1). Five clones showed cytotoxicity against HSV-infected autologous cells as well as HSV-infected allogeneic cells and K562 cells (group 2). The cytotoxicity of these clones was found to be mediated by the direct killing but not by the "innocent bystander" killing of target cells. Sixty clones showed no cytotoxic activity, however, among these, 23 revealed HLA-unrestricted and nonspecific cytotoxicity in the presence of PHA in culture (group 3), and the remaining 37 did not show any cytotoxic activity even in the presence of PHA (group 4). The cytotoxic patterns of these clones did not change in activated and resting phases, suggesting that the difference in cytotoxic ability does not depend on cell cycles. The cytotoxic activity of group 1 was inhibited by addition of anti-HLA-DR or anti-CD3 mAb to the culture, whereas these mAb had no effect on the cytotoxicity of group 2. All four groups of clones had helper activity for anti-HSV antibody production by autologous B cells. Moreover it was found that all groups of clones simultaneously produced IL-2, IL-4, and IFN-gamma after culture with APC followed by HSV Ag stimulation. The surface phenotype of all clones was uniformly CD2+, CD3+, CD4+, CD8-, CD29+, CD45RA-, but expression of Leu 8 was varied. These data therefore indicate that HSV-specific human CD4+ T cells are classified into at least four groups according to the presence and specificity of cytotoxicity, i.e., Th cells with HSV-specific and HLA-class II-restricted cytotoxicity, Th cells with HLA-unrestricted and nonspecific cytotoxicity, Th cells with lectin-dependent cytotoxicity, and Th cells without cytotoxic activity. The present finding of functional heterogeneity among virus-specific human CD4+ T cells might shed light on the pathogenesis of CD4+ T cell immunodeficiency, such as human retrovirus infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号