首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary Utilization and fermentation of xylose by the yeasts Pachysolen tannophilus I fGB 0101 and Pichia stipitis 5773 to 5776 under aerobic and anaerobic conditions are investigated. Pa. tannophilus requires biotin and thiamine for growth, whereas Pi. stipitis does not, and growth of both yeasts is stimulated by yeast extract. Pi. stipitis converts xylose (30 g/l) to ethanol under anaerobic conditions with high yields of 0,40 and it produces only low amounts of xylitol. The yield coefficient is further increased at lower xylose concentrations.Publication Nr. 2 of this series: Eur. J. Appl. Microbiol. Biotechnol. (1983) 17, 287–291.  相似文献   

2.
The activities of xylitol dehydrogenase and xylose reductase in the yeasts Candida shehatae, C. didensiae, C. intermediae, C. tropicalis, Kluyveromyces marxianus, Pichia stipitis, P. guillermondii, Pachysolen tannophilus, and Torulopsis molishiama were studied at different oxygen transfer rates (OTRs) to the fermentation medium (0, 5, and 140 mmol O2/(l h)). The activities of these enzymes were maximum in the yeasts P. stipitis and C. shehatae. The xylitol dehydrogenase of all the yeasts was NAD+-dependent, irrespective of the intensity of aeration. The xylose reductase of the yeasts C. didensiae, C. intermediae, C. tropicalis, Kl. marxianus, P. guillermondii, and T. molishiama was NADPH-dependent, whereas the xylose reductase of P. stipitis, C. shehatae, and Pa. tannophilus was specific for both NADPH and NADH. The effect of OTR on the activities of the different forms of xylitol dehydrogenase and xylose reductase in xylose-assimilating yeasts is discussed.  相似文献   

3.
A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production yield, fast cell growth, and rapid sugar consumption with xylose being consumed after glucose depletion, while P. stipitis was almost unable to utilize xylose under these conditions. It is further demonstrated that for S. passalidarum, the xylose conversion takes place by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to the balance between the cofactor’s supply and demand through this XR–XDH pathway. Only few XRs with NADH preference have been reported so far. 2-Deoxy glucose completely inhibited the conversion of xylose by S. passalidarum under anaerobic conditions, but only partially did that under aerobic conditions. Thus, xylose uptake by S. passalidarum may be carried out by different xylose transport systems under anaerobic and aerobic conditions. The presence of glucose also repressed the enzymatic activity of XR and XDH from S. passalidarum as well as the activities of those enzymes from P. stipitis.  相似文献   

4.
Summary The uptake of d-{1-13C} xylose, the accumulation of intermediates and the distribution of the label in ethanol in Pichia stipitis under aerobic and anaerobic conditions were investigated by nuclear magnetic resonance spectroscopy. The rate-limiting step of d-xylose metabolism under aerobic conditions appeared to be uptake, whereas under anaerobic conditions it was the conversion of xylitol to xylulose. The yeast showed no preference to either the alpha-or beta-forms of d-xylose. Under anaerobic conditions only {2-13C{ ethanol was detected and this suggests that NADH but not NADPH was used as cofactor in the conversion of xylose to xylitol. d-Xylose is most likely metabolised by the pentose phosphate pathway in this yeast.  相似文献   

5.
Summary The growth and ethanol production by the d-xylose-fermenting yeasts Pichia stipitis and Pachysolen tannophilus under various conditions of aerobiosis responded similarly to the addition of the respiratory inhibitors potassium cyanide (KCN), antimycin A (AA), sodium azide and rotenone. However, the d-glucose-fermenting yeast Saccharomyces cerevisiae differed markedly from these yeasts in response to the inhibitors. In general the growth of the d-xylose-fermenting yeasts was inhibited by the respiratory inhibitors while ethanol production was either stimulated (especially when oxygen was available) or unaffected or inhibited by rotenone or AA or KCN and sodium azide, respectively. However, by exception KCN and AA stimulated ethanol production under aerobic conditions by Pichia stipitis and Pachysolen tannophilus respectively. Stimulatory or inhibitory effects by respiratory inhibitors were less marked in S. cerevisiae. These data suggest that unimpaired mitochondrial function is necessary for growth on d-xylose and optimal d-xylose fermentation. A requirement for membrane generated energy during d-xylose utilisation is indicated by 2,4-dinitrophenol inhibition of growth and fermentation.  相似文献   

6.
The activity and the cofactor specificity of xylose reductase and xylitol dehydrogenase were studied in extracts of yeasts from the genera Candida, Kluyveromyces, Pachysolen, Pichia,and Torulopsis grown under microaerobic conditions. It was found that xylitol dehydrogenase in all of the yeast species studied is specific for NAD+; xylose reductase in the xylitol-producing species C. didensiae, C. intermediae, C. parapsilosis, C. silvanorum, C. tropicalis, Kl. fragilis, Kl. marxianus, P. guillermondii, andT. molishiama is specific for NADPH; and xylose reductase in the ethanol-producing species P. stipitis, C. shehatae, and Pa. tannophilus is specific for both NADPH and NADH.  相似文献   

7.
Theoretical calculations of the NADPH requirement for biomass formation indicate that in yeasts this parameter is strongly dependent on the carbon and nitrogen sources used for growth. Enzyme surveys of NADPH-generating metabolic pathways and radiorespirometric studies demonstrate that in yeasts the HMP pathway is the major source of NADPH. Furthermore, radiorespirometric data suggest that in yeasts the HMP pathway activities are close to the theoretical minimum. It may be concluded that the mitochondrial NADPH oxidation, which in yeasts may yield ATP, is quantitatively not an important process.The inability of C. utilis to utilize the NADH produced in formate oxidation as an extra source of NADPH strongly suggests that transhydrogenase activity is absent. Furthermore, the absence of xylose utilization under anaerobic conditions in most facultatively fermentative yeasts indicates that also in these organisms transhydrogenase activity is absent. This conclusion is supported by the observation that anaerobic xylose utilization is observed only in those yeasts which possess a high activity of an NADH-linked xylose reductase. Hence in these organisms the redox-neutral conversion of xylose to ethanol is possible, since the second step in xylose metabolism is mediated by an NAD+-linked xylitol dehydrogenase.This paper is adapted from a treatise by the same author, entitled: The NADP(H) redox couple in yeast metabolism, that was awarded the Kluyver prize 1986 by the Netherlands Society of Microbiology  相似文献   

8.

Background  

Xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis are the two enzymes most commonly used in recombinant Saccharomyces cerevisiae strains engineered for xylose utilization. The availability of NAD+ for XDH is limited during anaerobic xylose fermentation because of the preference of XR for NADPH. This in turn results in xylitol formation and reduced ethanol yield. The coenzyme preference of P. stipitis XR was changed by site-directed mutagenesis with the aim to engineer it towards NADH-preference.  相似文献   

9.
Summary Pichia stipitis Y7124 was grown anaerobically on d-xylose in the presence of an initial ethanol concentration (E0) varying from 0 to 40 g/l. When E0 increased, the yield of xylitol increased linearly, reaching a value of 0.20 mol xylitol/mol xylose at E0=40 g/l. When a hydrogen acceptor (acetoin) was added to the cultures, the cylitol yield decreased with the contaminant stoichiometric reduction of acetoin to 2,3-butanediol. Furthermore, it was demonstrated that xylitol dehydrogenase and acetoin reductase activities from cell-free extracts of P. stipitis Y7124 were NAD+ and NADH2-linked, respectively. A hypothesis is put forward explaining that the xylitol yield is dependent on the ethanol concentration. It is suggested that ethanol may cause a disturbed NAD+/NADH2 balance during anaerobic xylose metabolism by P. stipitis. Metabolic mechanisms are proposed and their validity is discussed. Offprint requests to: J. P. Delgenes  相似文献   

10.
The relationship between the degree of aerobiosis, xylitol production and the initial two key enzymes of d-xylose metabolism were investigated in the yeasts Pichia stipitis, Candida shehatae and C. tenuis. Anoxic conditions severely curtailed growth and retarded ethanol productivity. This, together with the inverse relationship between xylitol accumulation and aeration level, suggested a degree of redox imbalance. The ratios of NADH- to NADPH-linked xylose reductase were similar in all three yeasts and essentially independent of the degree of aerobiosis, and thus did not correlate with their differing capacities for ethanol production, xylitol accumulation or growth under the different conditions of aerobiosis. Under anoxic conditions the enzyme activity of Pichia stipitis decreased significantly, which possibly contributed to its weaker anoxic fermentation of xylose compared to C. shehatae.  相似文献   

11.
Summary The fermentation by Candida shehatae and Pichia stipitis of xylitol and the various sugars which are liberated upon hydrolysis of lignocellulosic biomass was investigated. Both yeasts produced ethanol from d-glucose, d-mannose, d-galactose and d-xylose. Only P. stipitis fermented d-cellobiose, producing 6.5 g·l-1 ethanol from 20 g·l-1 cellobiose within 48 h. No ethanol was produced from l-arabinose, l-rhamnose or xylitol. Diauxie was evident during the fermentation of a sugar mixture. Following the depletion of glucose, P. stipitis fermented galactose, mannose, xylose and cellobiose simultaneously with no noticeable preceding lag period. A similar fermentation pattern was observed with C. shehatae, except that it failed to utilize cellobiose even though it grew on cellobiose when supplied as the sole sugar. P. stipitis produced considerably more ethanol from the sugar mixture than C. shehatae, primarily due to its ability to ferment cellobiose. In general P. stipitis exhibited a higher volumetric rate and yield of ethanol production. This yeast fermented glucose 30–50% more rapidly than xylose, whereas the rates of ethanol production from these two sugars by C. shehatae were similar. P. stipitis had no absolute vitamin requirement for xylose fermentation, but biotin and thiamine enhanced the rate and yield of ethanol production significantly.Nomenclature max Maximum specific growth rate, h-1 - Q p Maximum volumetric rate of ethanol production, calculated from the slope of the ethanol vs. time curve, g·(l·h)-1 - q p Maximum specific rate of ethanol production, g·(g cells·h) - Y p/s Ethanol yield coefficient, g ethanol·(g substrate utilized)-1 - Y x/s Cell yield coefficient, g biomass·(g substrate utilized)-1 - E Efficiency of substrate utilization, g substrate consumed·(g initial substrate)-1·100  相似文献   

12.
Industrial Saccharomyces cerevisiae strains able to utilize xylose have been constructed by overexpression of XYL1 and XYL2 genes encoding the NADPH-preferring xylose reductase (XR) and the NAD+-dependent xylitol dehydrogenase (XDH), respectively, from Pichia stipitis. However, the use of different co-factors by XR and XDH leads to NAD+ deficiency followed by xylitol excretion and reduced product yield. The furaldehydes 5-hydroxymethyl-furfural (HMF) and furfural inhibit yeast metabolism, prolong the lag phase, and reduce the ethanol productivity. Recently, genes encoding furaldehyde reductases were identified and their overexpression was shown to improve S. cerevisiae growth and fermentation rate in HMF containing media and in lignocellulosic hydrolysate. In the current study, we constructed a xylose-consuming S. cerevisiae strain using the XR/XDH pathway from P. stipitis. Then, the genes encoding the NADH- and the NADPH-dependent HMF reductases, ADH1-S110P-Y295C and ADH6, respectively, were individually overexpressed in this background. The performance of these strains, which differed in their co-factor usage for HMF reduction, was evaluated under anaerobic conditions in batch fermentation in absence or in presence of HMF. In anaerobic continuous culture, carbon fluxes were obtained for simultaneous xylose consumption and HMF reduction. Our results show that the co-factor used for HMF reduction primarily influenced formation of products other than ethanol, and that NADH-dependent HMF reduction influenced product formation more than NADPH-dependent HMF reduction. In particular, NADH-dependent HMF reduction contributed to carbon conservation so that biomass was produced at the expense of xylitol and glycerol formation.  相似文献   

13.
Xylose reductase (XR) and xylitol dehydrogenase (XDH) are the key enzymes for xylose fermentation and have been widely used for construction of a recombinant xylose fermenting yeast. The effective recycling of cofactors between XR and XDH has been thought to be important to achieve effective xylose fermentation. Efforts to alter the coenzyme specificity of XR and HDX by site-directed mutagenesis have been widely made for improvement of efficiency of xylose fermentation. We previously succeeded by protein engineering to improve ethanol production by reversing XDH dependency from NAD+ to NADP+. In this study, we applied protein engineering to construct a novel strictly NADPH-dependent XR from Pichia stipitis by site-directed mutagenesis, in order to recycle NADPH between XR and XDH effectively. One double mutant, E223A/S271A showing strict NADPH dependency with 106% activity of wild-type was generated. A second double mutant, E223D/S271A, showed a 1.27-fold increased activity compared to the wild-type XR with NADPH and almost negligible activity with NADH.  相似文献   

14.
Summary Pachysolen tannophilus contains — in addition to an NADPH-linked xylose reductase — a separate NADH-linked one, in this respect differing from the yeast Pichia stipitis. Both enzyme proteins can conveniently be separated from each other by either ion exchange chromatography or chromatofocusing.  相似文献   

15.
Effect of Oxygenation on Xylose Fermentation by Pichia stipitis   总被引:3,自引:5,他引:3       下载免费PDF全文
The effect of oxygen limitation on xylose fermentation by Pichia stipitis (CBS 6054) was investigated in continuous culture. The maximum specific ethanol productivity (0.20 g of ethanol g dry weight−1 h−1) and ethanol yield (0.48 g/g) was reached at an oxygen transfer rate below 1 mmol/liter per h. In the studied range of oxygenation, the xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were constant as well as the ratio between the NADPH and NADH activities of xylose reductase. No xylitol production was found. The pyruvate decarboxylase (EC 4.1.1.1) activity increased and the malate dehydrogenase (EC 1.1.1.37) activity decreased with decreasing oxygenation. With decreasing oxygenation, the intracellular intermediary metabolites sedoheptulose 7-phosphate, glucose 6-phosphate, fructose 1,6-diphosphate, and malate accumulated slightly while pyruvate decreased. The ratio of the xylose uptake rate under aerobic conditions, in contrast to that under anaerobic assay conditions, increased with increasing oxygenation in the culture. The results are discussed in relation to the energy level in the cell, the redox balance, and the mitochondrial function.  相似文献   

16.
The industrial yeast Candida utilis can grow on media containing xylose as sole carbon source, but cannot ferment it to ethanol. The deficiency might be due to the low activity of NADPH-preferring xylose reductase (XR) and NAD+-dependent xylitol dehydogenase (XDH), which convert xylose to xylulose, because C. utilis can ferment xylulose. We introduced multiple site-directed mutations in the coenzyme binding sites of XR and XDH derived from the xylose-fermenting yeast Candida shehatae to alter their coenzyme specificities. Several combinations of recombinant and native XRs and XDHs were tested. Highest productivity was observed in a strain expressing CsheXR K275R/N277D (NADH-preferring) and native CsheXDH (NAD+-dependent), which produced 17.4 g/L of ethanol from 50 g/L of xylose in 20 h. Analysis of the genes responsible for ethanol production from the xylose capacity of C. utilis indicated that the introduction of CsheXDH was essential, while overexpression of CsheXR K275R/N277D improved efficiency of ethanol production.  相似文献   

17.
Summary The ability of a Candida shehatae and a Pachysolen tannophilus strain to ferment D-xylose to ethanol was evaluated in defined and complex media under different levels of aeration. Aeration enhanced the ethanol productivity of both yeasts considerably. C. shehatae maintained a higher fermentation rate and ethanol yield than P. tannophilus over a wide range of aeration levels. Ethanol production by C. shehatae commenced during the early stage of the fermentation, whereas with P. tannophilus there was a considerable lag between the initiation of growth and ethanol production. Both yeasts produced appreciable quantities of xylitol late in the fermentation. P. tannophilus failed to grow under anoxic conditions, producing a maximum of only 0.5 g · l-1 ethanol. In comparison, C. shehatae exhibited limited growth in anoxic cultures, and produced ethanol much more rapidly. Under the condition of aeration where C. shehatae exhibited the highest ethanol productivity, the fermentation parameters were: maximum specific growth rate, 0.15 h-1; maximum volumetric and specific rates of ethanol production, 0.7 g (l · h)-1 and 0.34 g ethanol (g cells · h)-1 respectively; ethanol yield, 0.36 g (g xylose)-1. The best values obtained with P. tannophilus were: maximum specific growth rate, 0.14 h-1; maximum volumetric and specific rates of ethanol production, 0.22 g (l · h)-1 and 0.07 h-1 respectively; ethanol yield coefficient, 0.28. Because of its higher ethanol productivity at various levels of aeration, C. shehatae has a greater potential for ethanol production from xylose than P. tannophilus.  相似文献   

18.
Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.  相似文献   

19.
Xylose reductase from the xylose-fermenting yeast Pichia stipitis was purified to electrophoretic and spectral homogeneity via ion-exchange, affinity and high-performance gel chromatography. The enzyme was active with various aldose substrates, such as DL-glyceraldehyde, L-arabinose, D-xylose, D-ribose, D-galactose and D-glucose. Hence the xylose reductase of Pichia stipitis is an aldose reductase (EC 1.1.1.21). Unlike all aldose reductases characterized so far, the enzyme from this yeast was active with both NADPH and NADH as coenzyme. The activity with NADH was approx. 70% of that with NADPH for the various aldose substrates. NADP+ was a potent inhibitor of both the NADPH- and NADH-linked xylose reduction, whereas NAD+ showed strong inhibition only with the NADH-linked reaction. These results are discussed in the context of the possible use of Pichia stipitis and similar yeasts for the anaerobic conversion of xylose into ethanol.  相似文献   

20.
Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号