首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequencies of chromatid aberrations produced in roots of Vicia faba by clastogenic (chromosome-damaging) agents were strongly enhanced by exposing the root-tip cells to inhibitors of DNA synthesis during the G2 phase. Chromosome damage produced by both S-dependent (maleic hydrazide, methyl methanesulfonate, thio-TEPA) and S-independent (X-rays, streptonigrin) mechanisms was enhanced by the inhibitor treatments. The types of aberrations affected by the inhibitors were mainly chromatid gaps and breaks and isochromatid breaks of the non-union type. Most effective among the inhibitors tested were hydroxyurea (HU) and 5-fluorodeoxyuridine (FdUrd). Post-treatments with caffeine were effective in enhancing clastogen-induced chromosome damage when given during the S phase. All types of aberrations, exchanges as well as breaks, were enhanced by the post-treatments. When given during the G2 phase, caffeine enhanced only the frequency of chromatid aberrations produced by X-rays. The enhancement was slight and obtained only when the cells were irradiated in the G2 phase and immediately post-treated with caffeine. Clastogen-treated cultures of human lymphocytes responded to post-treatments with inhibitors of DNA synthesis in very much the same way as clastogen-treated root-tip cells of Vicia faba. Thus, the frequencies of chromatid gaps and breaks and isochromatid breaks of the non-union type were strongly enhanced by exposing clastogen-treated lymphocytes to inhibitors of DNA synthesis during the G2 phase. The efficiency of the inhibitors, however, varied considerably in the two materials. On the whole, the number of inhibitors capable of enhancing induced chromosome damage was much larger in lymphocytes than in bean root tips. Only HU was equally effective in both materials. The most striking difference between the two materials was found when caffeine was given as a post-treatment. Thus, in human lymphocytes the frequencies of chromatid aberrations induced by most clastogenic agents were strongly enhanced when caffeine was given during the G2 phase, but little affected by post-treatments with caffeine during the S phase.  相似文献   

2.
In recent years the existence of a DNA-repair process in G2 has been proposed to explain the potentiating effects of DNA-repair inhibitors given in G2 on chromatid aberrations (CA) induced by S-dependent as well as S-independent DNA-damaging agents. In the present report, root-tip cells of Allium cepa were exposed to maleic hydrazide (MH) or mitomycin C (MMC) and post-treated in G2 with caffeine (Caff) and various inhibitors of DNA synthesis. No enhancement of chromosome damage was observed when Caff was present in G2, but hydroxyurea (HU) or 5-fluorodeoxyuridine (FdUrd) potentiated the frequencies of CA. A slight additional increase of CA frequencies was observed following treatment with Ara C and excess thymidine in G2. When MH-damaged cells were pulse-treated with Caff earlier during recovery, the yield of CA was enhanced. The earlier Caff was present following MH treatment, the stronger was the potentiation.  相似文献   

3.
Whole-blood cultures of human lymphocytes were exposed in the G2-phase to caffeine and to 4 inhibitors of DNA synthesis, hydroxyurea (HU), 2′-deoxyadenosine (dAdo), 1-β- -arabinofuranosylcytosine (araC) and aphidicolin (Aph), either individually or in pairs resulting in 10 different possible combinations. Since dAdo is rapidly deaminated in whole-blood cultures, all treatments involving dAdo were carried out in the presence of an inhibitor of the enzyme adenosine deaminase (ADA). The G2-treatments were carried out on 3 different types of culture, (1) cultures that had not previously been exposed to any mutagenic treatment, (2) cultures that had been irradiated with 0.4 Gy of X-rays 3.5 h before harvesting, and (3) cultures that had been exposed for 2 h to 4 × 10−5 M thiotepa (TT) in G0 immediately before stimulation with phytohaemagglutinin. The aim of the study was to find out in which combinations the inhibitors enhanced synergistically the frequencies of spontaneous and induced chromatid aberrations. In all 3 types of experiment, synergistic effects were observed with most of the 10 combinations, those involving HU being particularly effective. A very strong synergistic enhancement was also obtained when dAdo was combined with Aph.  相似文献   

4.
K Kishi 《Mutation research》1987,176(1):105-116
It has been shown that certain types of DNA lesions induced by an S-dependent clastogen are converted to chromosome-type aberrations when their repair is inhibited in the G1 phase of the cell cycle. The purpose of the present study was to investigate which kinds of repair inhibitors have the ability to induce chromosome-type aberrations in cells having DNA lesions and which kinds of DNA lesions will be converted to chromosome-type aberrations when their repair is inhibited. For this purpose, human peripheral blood lymphocytes, which were treated with a clastogen in their G0 phase, were post-treated with one of several kinds of repair inhibitors in the G1 phase, and resulting frequencies of both chromosome-type and chromatid-type aberrations as well as of sister-chromatid exchanges (SCEs) were compared with those of the control cultures: chromatid-type aberrations and SCEs were adopted as cytogenetic indicators of lesions remaining in S and G2 phases. Chemicals used for the induction of DNA lesions were 4-nitroquinoline 1-oxide (4NQO), methyl methanesulfonate (MMS) and mitomycin C (MMC); inhibitors used were excess thymidine (dThd), caffeine, hydroxyurea (HU), 5-fluoro-2'-deoxyuridine (FdUrd), 1-beta-D-arabinofuranosylcytosine (ara C), 9-beta-D-arabinofuranosyladenine (ara A), 1-beta-D-arabinofuranosylthymine (ara T) and aphidicolin (APC). Induction of chromosome-type aberrations was observed in cells pretreated with 4NQO or MMS followed by ara C, ara A, ara T or APC, whereas other combinations of a clastogen and an inhibitor did not induce them. Among the inhibitors, ara C alone induced chromosome-type aberrations in cells without pretreatment. Chromatid-type aberrations were increased only in cells pretreated with MMC and their frequency was enhanced further by post-treatment with ara C. All of the clastogens used in the present experiments induced SCEs. Most inhibitors did not modify the SCE frequencies except for ara C which synergistically increased the frequency in MMC-treated cells. The present study offers further evidence that the lesions responsible for chromosome-type aberrations are those which are repaired quickly, and that they are converted to chromosome-type aberrations when repair by polymerase alpha is inhibited. The effects of ara C on MMC-induced lesions are considered residual effects of ara C treatment in the S or G2 phases rather than repair inhibition in the G1 phase.  相似文献   

5.
The clastogenic potential of the intercalating compound ellipticine, an antitumor alkaloid, has been demonstrated in mammalian cells. To characterize the mechanism of action of this drug over the cell cycle, human lymphocyte cultures from 2 healthy donors were treated with 3 micrograms/ml ellipticine in 30-min pulses during different phases of the cell cycle and analyzed for chromosomal aberrations and sister-chromatid exchanges. The G2 phase was most sensitive in terms of induction of aberrations, followed by S and G1. Chromatid-type aberrations were the most common type of chromosomal damage. Induction of SCEs was significantly high only after treatment at G1, when the frequencies of SCEs doubled. The post-treatment effect of lymphocytes with inhibitors of DNA repair, 10(-3) M caffeine and 5 x 10(-6) M 1-beta-D-arabinofuranosylcytosine, was also tested by adding 3 micrograms/ml ellipticine at G2 in 30-min pulses and immediately followed by caffeine and/or ara-C during the last 3 h before harvesting. Three experiments performed on blood from 3 donors showed a moderate potentiation effect on the frequency of chromatid-type aberrations (about 2-3 times) by both inhibitors. Likewise, a 3-fold increase was observed in the frequencies of chromosomal aberrations when caffeine and ara-C were combined. The present data demonstrate that posttreatment with caffeine and ara-C at G2 can modify the response of human lymphocytes treated with ellipticine by increasing the clastogenic action of this compound or by changing the cell-cycle progression.  相似文献   

6.
Whole-blood cultures of human lymphocytes were exposed in the G2-phase (3.5 h before harvesting) to various doses of X-rays and post-treated for 3 h with inhibitors of DNA synthesis. The inhibitors used were 2'-deoxyadenosine (dAdo), hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara-C). To prevent deamination of dAdo by adenosine deaminase (ADA), the dAdo treatments were carried out in the presence of the ADA inhibitor coformycin. HU and Ara-C were used either alone or in combination. After the 3-h inhibitor treatments, the cultures were harvested and slides prepared and analyzed for chromatid aberrations in metaphase. When the inhibitors were used at concentrations high enough to cause marked chromosome damage by themselves, very low doses of X-rays (0.025-0.2 Gy) were sufficient to produce a dramatic increase in the frequency of chromatid aberrations. High frequencies of chromatid aberrations were also obtained when cultures that had received moderate doses of X-rays (0.4-0.8 Gy) were post-treated with low inhibitor concentrations that produce no or only a few aberrations by themselves.  相似文献   

7.
L V Mayne 《Mutation research》1984,131(5-6):187-191
UV-irradiation causes an immediate depression in the rate of RNA synthesis in human skin fibroblasts. RNA synthesis rates recover to greater than or equal to 90% of unirradiated levels within 90 min in normal cells. This recovery can be prevented by incubating the cells after irradiation with araC/HU or aphidicolin, potent inhibitors of DNA replication and excision repair. The effect of these inhibitors on the recovery of RNA synthesis can also be observed in non-dividing cells; it is thus independent of their effects on DNA replication.  相似文献   

8.
S K Das 《Mutation research》1988,207(3-4):171-177
.3-1.0 microM araC (cytosine arabinoside) treatment of V79 cells produced inhibition of multiplication of cells which was accompanied by a large increase of cell size. In presence of 1-2 mM caffeine the inhibition of cell proliferation due to araC treatment was substantially reduced and cell-size increase was prevented; caffeine did not influence the uptake of araC by V79 cells. Flow microfluorometric analysis showed that caffeine induced a wave of cell cycle progression in 0.3 microM araC-treated cells. The cell cycle activated by caffeine in 0.3 microM araC-treated cells was largely well behaved; this was indicated by the fact that (1) prior to cell division cells achieved a tetraploid DNA content and (2) following cell division they had diploid DNA content as a result of which DNA homeostasis was maintained. At 1.0 microM araC concentration, however, extreme micronucleation was observed which gave rise to a substantial fraction of micronuclei with less than G1 DNA content.  相似文献   

9.
《Mutation Research Letters》1988,207(3-4):171-177
0.3–1.0 σmM araC (cytosine arabinoside) treatment of V79 cells produced inhibition of multiplication of cells which was accompanied by a large increase of cell size. In presence of 1–2 mM caffeine the inhibition of cell proliferation due to araC treatment was substantially reduced and cell-size increase was prevented; caffeine did not influence the uptake of araC by V79 cells. Flow microfluorometric analysis showed that caffeine induced a wave of cell cycle progression in 0.3 μM araC-treated cells. The cell cycle activated by caffeine in 0.3 μM araC-treated cells was largely well behaved; this was indicated by the fact that (1) prior to cell division cells achieved a tetraploid DNA content and (2) following cell division they had diploid DNA content as a result of which DNA homeostasis was maintained. At 1.0 μM araC concentration, however, extreme micronucleation was observed which gave rise to a substantial fraction of micronuclei with < G1 DNA content.  相似文献   

10.
    
Summary Vicia faba root tip meristem cells were treated with low doses of the clastogens maleic hydrazide (MH) and N-methyl-N-nitrosourea (MNU) or sublethal heat shock and 2 h later with a high dose of MH or MNU, respectively. This procedure results in clastogenic adaptation, i.e., a lower yield of aberrations than after treatment with the high clastogen doses alone. When an additional post-treatment with inhibitors of G2-repair, such as hydroxyurea (HU), 5-fluorodeoxyuridine (FdUrd), or 2-deoxyadenosine (dAdo), was performed, the protective effect triggered by low dose pretreatment was completely abolished, especially at early fixation times: The aberration yields observed were as high as or higher than after combination of only the high clastogen dose with inhibitor post-treatment. The most probable interpretation of the results seems to be: Inhibition of G2-repair increased transformation into aberrations of potentially clastogenic lesions (DNA single- and double-strand breaks) which normally become correctly repaired. This may occur to a similar extent as aberration formation is avoided by repair of preclastogenic lesions (base damages) during S-phase by inducible processes termed clastogenic adaptation.Abbreviations dAdo 2-deoxyadenosine - Col colchicine - FdUrd 5-fluorodeoxyuridine - hs heat shock - HU hydroxyurea - MH maleic hydrazide (1,2-dihydro-pyridazine-3,6-dione) - MNU N-methyl-N-nitrosourea  相似文献   

11.
The role of UV-induced DNA lesions and their repair in the formation of chromosomal aberrations in the xrs mutant cell lines xrs 5 and xrs 6 and their wild-type counterpart, CHO-K1 cells, were studied. The extent of induction of DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) due to UV irradiation in the presence or absence of 1-beta-D-arabinofuranosylcytosine (ara-C) and hydroxyurea (HU) was determined using the alkaline and neutral elution methods. Results of these experiments were compared with the frequencies of induced chromosomal aberrations in UV-irradiated G1 cells treated under similar conditions. Xrs 6 cells showed a defect in their ability to perform the incision step of nucleotide repair after UV irradiation. Accumulation of breaks 2 h after UV irradiation in xrs 6 cells in the presence of HU and ara-C remained at the level of incision breaks estimated after 20 min, which was about 35% of that found in wild-type CHO-K1 cells. In UV-irradiated CHO-K1 and xrs 5 cells, more incision breaks were present after 2 h compared with 20 min post-treatment with ara-C, a further increase was evident when HU was added to the combined treatment. The level of incision breaks induced under these conditions in xrs 5 was about 80% of that observed in CHO-K1 cells. UV irradiation itself did not induce any detectable DNA strand breaks. Accumulation of SSBs in UV-irradiated cells post-treated with ara-C and HU coincides with the increase in the frequency of chromosomal aberrations. These data suggest that accumulated SSBs when converted to DSBs in G1 give rise to chromosome-type aberrations, whereas strand breaks persisting until S-phase result in chromatid-type aberrations. Xrs 6 appeared to be the first ionizing-radiation-sensitive mutant with a partial defect in the incision step of DNA repair of UV-induced damage.  相似文献   

12.
Rowley R  Zhang J 《Genetics》1999,152(1):61-71
Cells exposed to inhibitors of DNA synthesis or suffering DNA damage are arrested or delayed in interphase through the action of checkpoint controls. If the arrested cell is exposed to caffeine, relatively normal cell cycle progression is resumed and, as observed in checkpoint control mutants, loss of checkpoint control activity is associated with a reduction in cell viability. To address the mechanism of caffeine's action on cell progression, fission yeast mutants that take up caffeine but are not sensitized to hydroxyurea (HU) by caffeine were selected. Mutants 788 and 1176 are point mutants of rhp6, the fission yeast homolog of the budding yeast RAD6 gene. Mutant rhp6-788 is slightly HU sensitive, radiosensitive, and exhibits normal checkpoint responses to HU, radiation, or inactivation of DNA ligase. However, the addition of caffeine does not override the associated cell cycle blocks. Both point and deletion mutations show synthetic lethality at room temperature with temperature-sensitive mutations in cyclin B (cdc13-117) or the phosphatase cdc25 (cdc25-22). These observations suggest that the rhp6 gene product, a ubiquitin-conjugating enzyme required for DNA damage repair, promotes entry to mitosis in response to caffeine treatment.  相似文献   

13.
Aphidicolin inhibits repair of DNA in UV-irradiated human fibroblasts   总被引:3,自引:0,他引:3  
Aphidicolin, a specific inhibitor of DNA polymerase α, is shown to inhibit DNA repair in human diploid fibroblasts. Although aphidicolin has no apparent effect on the DNA of unirradiated cells, it causes a large number of strand breaks to accumulate in UV-irradiated cellular DNA. The number of breaks is the same as the number observed following a similar dose of ultraviolet light when cells are treated with arabinofuranosyl cytosine (araC) and hydroxyurea (HU), known inhibitors of repair. Moreover, two-dimensional paper chromatography shows that aphidicolin completely blocks removal of pyrimidine dimers. These observations are discussed in light of the proposed roles of DNA polymerases α β in DNA replication and repair and the action of aphidicolin on polymerase α.  相似文献   

14.
To increase the sensitivity of cytogenetic surveillance of exposure to mutagens in the peripheral lymphocyte assay, structural chromosome aberrations (CA) were studied after inhibition of DNA synthesis and DNA repair with hydroxyurea and caffeine in culture 3 h prior to harvesting. CA and sister-chromatid exchanges (SCE) from conventional cultures from the same subjects were used for comparison. Smoking was used as exposure parameter. Thirty-two smokers and 35 nonsmokers were studied. In the inhibited cultures a significantly higher number of aberrations was found in lymphocytes from smokers than nonsmokers: chromatid breaks (20.4 vs. 11.8, p = 0.0002), chromosome breaks (4.5 vs. 1.7, p = 0.0003), and the number of cells with aberrations (18.9 vs. 12.4, p = 0.0001), when 50 cells per subject were analyzed. In conventional cultures no increase in gaps, chromatid and chromosome breaks or number of cells with aberrations was found in smokers when 100 cells from each subject were studied. Smokers showed an increased number of SCE (6.8 vs. nonsmokers 5.9, p = 0.02). A significant positive linear correlation (r = 0.39, p = 0.01) was seen between SCE and the number of cells with chromatid breaks from inhibited cultures. The present results indicate that adding hydroxyurea and caffeine to lymphocyte cultures for the last 3 h prior to harvesting may enhance the detection of cytogenetic damage from previous in vivo exposure to mutagens.  相似文献   

15.
Growing roots of Vicia faba were treated with MH for 5 h, washed for 2 h and exposed to 3H-thymidine (3H-TdR) for additional 2-h periods at 7 h, 24 h and 32 h after the onset of MH treatment, to label DNA. As the replicative DNA synthesis was suppressed by HU, an enhancement of 3H-TdR incorporation into nuclear DNA above the control, as determined by microautoradiography, was considered to be due to unscheduled DNA synthesis induced by the mutagen. A significantly higher incorporation of 3H-TdR into DNA of MH-treated roots occurred, when labelling was applied 7 h after the MH action, whereas at 24 h only slight and at 32 h no enhancement of DNA labelling above control was registered. A 3-14-day storage with 50% water content of V. faba seeds exposed to MH or MMS resulted in a recovery from mutagen-induced chromosomal damage and a significantly higher incorporation of 3H-TdR into nuclear DNA. This supports the hypothesis that recovery from MH- and MMS-induced chromosomal damage is mediated by excision repair during seed storage.  相似文献   

16.
Using 1-β- -arabinofuranosylcytosine (AraC) which is an inhibitor of DNA-repair resynthesis, previous studies have shown that the frequency of chromosome-type aberrations is influenced by the rate of repair of araC-inhibitable DNA damage. The experiments described here are a further test of this hypothesis and also an attempt to determine if the different sensitivities of lymphocytes of different species to X-ray-induced aberrations are related to the rate of endonucleolytic incision during repair of DNA damage. Unstimulated lymphocytes from 4 species were exposed to an X-ray dose of 200 rad, and then incubated with araC for 0, 1, 2, 3 or 4 h. The aberration frequencies increased in all species up to 3–4 h. It was also clear that the rate of increase was different between species and was approximately proportional to the ratios of X-ray-induced aberrations observed in the absence of araC. For example, human lymphocytes are approximately twice as sensitive as rabbit lymphocytes to the induction of aberrations by X-rays and the rate of increase of aberrations in the presence of araC was about twice as great in human as rabbit lymphocytes. In addition, using 50, 100, 200 or 300 rad of X-rays and treating human lymphocytes for 0, 1, 2 or 3 h in araC post-irradiation, we have shown that the rate of increase in aberrations is proportional to the amount of araC-inhibitable DNA damage; with a limiting dose at about 50 rad. These results appear to provide a basis for interpreting differences in sensitivities to aberration induction among mammalian species.  相似文献   

17.
The frequency of X-ray-induced chromosome aberrations in G1 ML-1 mouse myeloid leukemia cells and normal mouse bone marrow cells increased with post-irradiation incubation with the DNA-repair resynthesis inhibitor 1-beta-D-arabinofuranosylcytosine (araC), but the frequency of aberrations in the leukemic cells increased with quite a different time response compared to the normal cells. Irradiated normal mouse bone marrow cells had a rapid increase in the frequency of chromosome exchanges and deletions with increasing araC incubation time, for example, an increase was observed with 0.5 h araC incubation. In contrast, the ML-1 cells did not have a significant increase in aberrations until 1-2 h post-irradiation incubation with araC. These results suggest that the ML-1 cells, per unit time, initially undergo less repair of the X-ray-induced DNA damage that can be converted into chromosome aberrations. We previously showed that the ML-1 cells have a higher frequency of X-ray-induced chromosome aberrations compared to normal cells and the results presented here indicate that a slower rate of repair resynthesis is contributing to the increased sensitivity of the ML-1 cells.  相似文献   

18.
19.
Transient but incomplete suppression of DNA synthesis by a single exposure of an asynchronous population of cells to 5-fluoro-2'-deoxyuridine (FdUrd) increases the frequency of appearance of methotrexate (MTX)-resistant colonies. This increase was greater than 10-fold following a 6-h incubation of cells with 3 microM FdUrd prior to selection in MTX, an interval one-half the normal L1210 cell cycle time. During this period of exposure to FdUrd, DNA synthesis decreased to 25% of control rates and cells accumulated at the G1/S interface. The 6-h incubation with FdUrd resulted in greater than a 2.5-fold increase in the dihydrofolate reductase protein level in the treated cell population, which was accounted for, at least in part, by increased de novo synthesis of the enzyme as assessed by [35S]methionine labeling. This increase in dihydrofolate reductase was associated with a decrease in growth inhibition by MTX. A brief reversal (2 h) of FdUrd-induced DNA synthesis inhibition by the addition of thymidine eliminated the amplification of dihydrofolate reductase and the enhanced emergence of MTX-resistant clones. Beyond this, an analysis of clones that survive MTX selection indicates that the dihydrofolate reductase gene copy in cells spontaneously resistant to 50 nM MTX and those which resulted after the additional pretreatment with FdUrd for 6 h are comparable with a 2-4-fold amplification of enzyme in most clones. These studies demonstrate that FdUrd enhancement of dihydrofolate reductase expression can have a profound effect upon the incidence and expression of MTX resistance and that dihydrofolate reductase gene amplification may be another basis for antagonism between these agents.  相似文献   

20.
Short treatment (up to 1 h) of cytosine arabinoside (araC) increases the frequencies of aberrations induced by X-rays in human lymphocytes, evaluated at the first mitosis following stimulation, or as prematurely condensed chromosomes of G0 nuclei. Parallel biochemical experiments using nucleoid sedimentation technique, demonstrate that araC inhibits rejoining of DNA-strand breaks effectively. These results point out that X-ray-induced short-lived DNA strand breaks lead to chromosomal aberrations in human lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号