首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.  相似文献   

3.
In an attempt to determine if alterations in intraneuronal Ca2+ may regulate tyrosine hydroxylase activity, brain slices were subjected to experimental manipulations known to increase the intraneuronal concentration of free Ca2+ ions. Incubation of either striatal or olfactory tubercle slices in a Na+-free medium for 15 min at 37 degrees resulted in a marked increase in the activity of tyrosine hydroxylase present in the 20,000 g supernatant fraction of homogenates prepared from the slices. Tyrosine hydroxylase isolated from slices previously incubated in a Na+-free, choline-enriched medium or in a Na+-free, sucrose-enriched medium exhibited maximal activities when assayed at pH 6.0 and 7.0, respectively. However, the percentage stimulation of enzyme activity induced by incubation of the slices in a Na+-free medium was maximal when the enzyme assays were performed at pH 7.0. The observed increase in enzyme activity seems to be mediated by a decrease in the apparent Km of the enzyme for pteridine cofactor, regardless of whether the kinetic enzyme analyses were conducted at pH 6.0 or 7.0, and by an increase in the Ki of the enzyme for end-product inhibitor dopamine. The apparent kinetic changes in the enzyme do not seem to result from alterations in the endogenous dopamine content of the slices, and they are independent of any increase in dopamine release that might have occurred as a response to the augmented intraneuronal Ca2+ concentration. Furthermore, the activation of tyrosine hydroxylase produced by incubating slices in a Na+-free medium is observed even in slices depleted of dopamine by pretreatment of rats with reserpine 90 min before preparation of brain slices. The activation of tyrosine hydroxylase observed under these experimental conditions does not seem to be mediated by cAMP or by a cAMP-dependent phosphorylation process. It is suggested that the changes in tyrosine hydroxylase reported are mediated primarily by a rise in the free Ca2+ concentration within the nerve tissue. These observations are consistent with the hypothesis that the kinetic activation of tyrosine hydroxylase produced after depolarization of central dopaminergic neurons may occur through a Ca2+-dependent even other than transmitter release.  相似文献   

4.
Selective modification of the tetrahydrobiopterin levels in cultured chromaffin cells were followed by changes in the rate of tyrosine hydroxylation. Addition of sepiapterin, an intermediate on the salvage pathway for tetrahydrobiopterin synthesis, rapidly increased intracellular levels of tetrahydrobiopterin and elevated the rate of tyrosine hydroxylation in the intact cell. Tyrosine hydroxylation was also enhanced when tetrahydrobiopterin was directly added to the incubation medium of intact cells. When the cultured chromaffin cells were treated for 72 h with N-acetylserotonin, an inhibitor of sepiapterin reductase, tetrahydrobiopterin content and the rate of tyrosine hydroxylation were decreased. Addition of sepiapterin or N-acetylserotonin had no consistent effect on total extractable tyrosine hydroxylase activity or on catecholamine content in the cultured chromaffin cells. Three-day treatment of chromaffin cell cultures with compounds that increase levels of cyclic AMP (forskolin, cholera toxin, theophylline, dibutyryl- and 8-bromo cyclic AMP) increased total extractable tyrosine hydroxylase activity and GTP-cyclohydrolase, the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. Tetrahydrobiopterin levels and intact cell tyrosine hydroxylation were markedly increased after 8-bromo cyclic AMP. The increase in GTP-cyclohydrolase and tetrahydrobiopterin induced by 8-bromo cyclic AMP was blocked by the protein synthesis inhibitor cycloheximide. Agents that deplete cellular catecholamines (reserpine, tetrabenazine, and brocresine) increased both total tyrosine hydroxylase and GTP-cyclohydrolase activities, although treating the cultures with reserpine or tetrabenazine resulted in no change in cellular levels of cyclic AMP. Brocresine and tetrabenazine increased tetrahydrobiopterin levels, but the addition of reserpine to the cultures decreased catecholamine and tetrahydrobiopterin content and resulted in a decreased rate of intact cell tyrosine hydroxylation in spite of the increased activity of the total extractable enzyme. These data indicate that in cultured chromaffin cells GTP-cyclohydrolase activity like tyrosine hydroxylase activity is regulated by both cyclic AMP-dependent and cyclic AMP-independent mechanisms and that the intracellular level of tetrahydrobiopterin is one of the many factors that control the rate of tyrosine hydroxylation.  相似文献   

5.
An immunoblot procedure was developed to quantify the amount of tyrosine hydroxylase protein in homogenate of small brain regions. With the use of this method we have studied the variations in tyrosine hydroxylase activity and protein levels in some catecholaminergic neurons at different times following a single reserpine injection (10 mg/kg s.c.) and reevaluated the anatomical specificity of tyrosine hydroxylase induction by this drug. Reserpine administration provoked a long-lasting increase in both tyrosine hydroxylase activity and protein levels within locus ceruleus neurons. This effect culminated at day 4 after injection. At this time, the enzyme activity and protein levels in treated animals were respectively 2.7 and 2.6 times that measured in vehicle-treated animals. Both parameters varied in parallel so that tyrosine hydroxylase specific activity did not change over time. In contrast, reserpine did not cause any changes in tyrosine hydroxylase activity in the dopaminergic neurons of the substantia nigra, but provoked a moderate increase in tyrosine hydroxylase protein level. This latter effect was maximal (1.5 times) 4 days after treatment. In the adjacent dopaminergic area, i.e., the ventral tegmental area, a small decrease in the enzyme activity was recorded at day 2 without any significant change in the level of the protein. In conclusion, first, our data show the capacity of our method to assay tyrosine hydroxylase protein amounts in small brain catecholaminergic nuclei. Second, our results confirm and extend previous studies on the effect of reserpine on the regulation of tyrosine hydroxylase level within brain noradrenergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Physiological stress induces tyrosine hydroxylase, the rate-limiting enzyme for catecholamine biosynthesis, via trans-synaptic mechanisms within the adrenal medulla. Previous studies have implicated cAMP as a second messenger capable of inducing tyrosine hydroxylase; however, it is unclear whether any receptor coupled to adenylate cyclase mediates tyrosine hydroxylase induction. Recently, vasoactive intestinal polypeptide, whose receptor is coupled to adenylate cyclase in many tissues, has been shown to meet many of the criteria for a neuromodulator within the adrenal medulla. We therefore undertook a series of studies to determine whether vasoactive intestinal polypeptide may induce tyrosine hydroxylase in PC12 cells, a cell line derived from rat adrenal medulla. Here we report that vasoactive intestinal polypeptide produces a transient, time- and concentration-dependent increase in tyrosine hydroxylase mRNA levels which is followed by a stable increase in tyrosine hydroxylase protein. The increase in tyrosine hydroxylase mRNA does not occur in a mutant PC12 cell line deficient in cAMP-dependent protein kinase activity, indicating that the effect of vasoactive intestinal polypeptide is mediated through the cAMP second messenger pathway. This is the first report demonstrating that a neuromodulator which acts on an adenylate cyclase-coupled receptor can induce tyrosine hydroxylase.  相似文献   

7.
When rats are treated daily with reserpine or maintained at 4 degrees C, the level of a specific RNA coding for tyrosine hydroxylase is elevated in the adrenal gland. The increase in this specific RNA temporally precedes and is quantitatively equal to the increase in adrenal tyrosine hydroxylase enzyme activity elicited by these treatments. These results suggest that prolonged stress may lead to changes in the levels of specific RNA species in the adrenal gland.  相似文献   

8.
The olfactory bulbs play a relevant role in the interaction between the animal and its environment. The existence of endothelin-1 and -3 in the rat olfactory bulbs suggests their role in the control of diverse functions regulated at this level. Tyrosine hydroxylase, a crucial enzyme in catecholamine biosynthesis, is tightly regulated by short- and long-term mechanisms. We have previously reported that in the olfactory bulbs endothelins participate in the short-term tyrosine hydroxylase regulation involving complex mechanisms. In the present work we studied the effect of long-term stimulation by endothelins on tyrosine hydroxylase in the rat olfactory bulbs. Our findings show that endothelin-1 and -3 modulated catecholaminergic transmission by increasing enzymatic activity. However, these peptides acted through different receptors and intracellular pathways. Endothelin-1 enhanced tyrosine hydroxylase activity through a super high affinity ET(A) receptor and cAMP/PKA and CaMK-II pathways, whereas, endothelin-3 through a super high affinity atypical receptor coupled to cAMP/PKA, PLC/PKC and CaMK-II pathways. Endothelins also increased tyrosine hydroxylase mRNA and the enzyme total level as well as the phosphorylation of Ser 19, 31 and 40 sites. Furthermore, both peptides stimulated dopamine turnover and reduced its endogenous content. These findings support that endothelins are involved in the long-term regulation of tyrosine hydroxylase, leading to an increase in the catecholaminergic activity which might be implicated in the development and/or maintenance of diverse pathologies involving the olfactory bulbs.  相似文献   

9.
Abstract: We have investigated three aspects of the relationship between calcium and tyrosine hydroxylase activity in rat striatum. In the first series of experiments, we examined the hypothesis that the rise in dopamine synthesis during increased impulse flow results from a calcium-induced activation of tyrosine hydroxylase. Calcium (12.5–200 μ M ) had no effect when added to crude enzyme or enzyme partially purified by gel filtration. Moreover, incubation of synaptosomes with excess calcium (up to 3.5 m M ) had little or no effect on dopamine synthesis. Incubation with the depolarizing alkaloid veratridine (75 μ M ) did increase dopamine synthesis, but did not alter the activity of tyrosine hydroxylase subsequently prepared from the synaptosomes, despite the presumed rise in intracellular calcium. In the second series we examined the hypothesis that increased dopamine synthesis after axotomy results from activation of tyrosine hydroxylase owing to a decrease in intracellular calcium. Addition of the calcium chelator EGTA (100 μ M ) to crude or partially purified enzyme was without effect, whereas incubation of synaptosomes with EGTA (500 μM ) decreased cell-free enzyme activity. In the third experimental series we examined the relationship between calcium and activation of tyrosine hydroxylase by dibutyryl cyclic AMP. EGTA failed to alter the increase in the activity of tyrosine hydroxylase prepared from synaptosomes incubated with dibutyryl cyclic AMP. However, it blocked the increase in synaptosomal dopamine synthesis and dopamine content normally produced by the cyclic AMP analogue. Thus, tyrosine hydroxylase does not appear to be activated by either increases or decreases in calcium availability. However, calcium may be important for the maintenance of basal tyrosine hydroxylase activity, and may play an indirect role in the expression of tyrosine hydroxylase activation produced by other means.  相似文献   

10.
In two groups of silver foxes--i.e. selected by the domestic type of behaviour and aggressive ones--studies have been made on the activity of the key enzyme in biosynthesis of catecholamines--i.e. tyrosine hydroxylase from the brain. Domesticated animals exhibited higher enzymic activity in the locus coeruleus, hypothalamus and cortex. Animals from both groups did not differ with respect to the level of tyrosine hydroxylase activity in the corpus striatum. The enzymic reactions of homogenates from locus coeruleus region of the brain in both groups of animals, as well as homogenates from the corpus striatum of the brain of aggressive animals exhibited low and approximately equal values of Michaelis constant for tyrosine. The value of KM was 3 times higher in the hypothalamus in both groups of foxes and in the corpus striatum of tame animals. Presumably, selection of silver foxes for the domestic type of behaviour resulted in the increase of biosynthesis of catecholamines in the brain due to the increase in the number of enzyme molecules. The increase in the activity of tyrosine hydroxylase in noradrenaline system of the brain may be associated with changes in the behavioural pattern of animals resulting from selection.  相似文献   

11.
Tyrosine hydroxylase is the rate-limiting enzyme in the biosynthesis of the catecholamines. It has been reported that retinol (vitamin A) modulates tyrosine hydroxylase activity by increasing its expression through the activation of the nuclear retinoid receptors. In this study, we observed that retinol also leads to an acute activation of tyrosine hydroxylase in bovine adrenal chromaffin cells and this was shown to occur via two distinct non-genomic mechanisms. In the first mechanism, retinol induced an influx in extracellular calcium, activation of protein kinase C and serine40 phosphorylation, leading to tyrosine hydroxylase activation within 15 min. This effect then declined over time. The retinol-induced rise in intracellular calcium then led to a second slower mechanism; this involved an increase in reactive oxygen species, activation of extracellular signal-regulated kinase 1/2 and serine31 phosphorylation and the maintenance of tyrosine hydroxylase activation for up to 2 h. No effects were observed with retinoic acid. These results show that retinol activates tyrosine hydroxylase via two sequential non-genomic mechanisms, which have not previously been characterized. These mechanisms are likely to operate in vivo to facilitate the stress response, especially when vitamin supplements are taken or when retinol is used as a therapeutic agent.  相似文献   

12.
Tyrosine hydroxylase, a hypoxia-regulated gene, may be involved in tissue adaptation to hypoxia. Intermittent hypoxia, a characteristic feature of sleep apnea, leads to significant memory deficits, as well as to cortex and hippocampal apoptosis that are absent after sustained hypoxia. To examine the hypothesis that sustained and intermittent hypoxia induce different catecholaminergic responses, changes in tyrosine hydroxylase mRNA, protein expression, and activity were compared in various brain regions of male rats exposed for 6 h, 1 day, 3 days, and 7 days to sustained hypoxia (10% O(2)), intermittent hypoxia (alternating room air and 10% O(2)), or normoxia. Tyrosine hydroxylase activity, measured at 7 days, increased in the cortex as follows: sustained > intermittent > normoxia. Furthermore, activity decreased in the brain stem and was unchanged in other brain regions of sustained hypoxia-exposed rats, as well as in all regions from animals exposed to intermittent hypoxia, suggesting stimulus-specific and heterotopic catecholamine regulation. In the cortex, tyrosine hydroxylase mRNA expression was increased, whereas protein expression remained unchanged. In addition, significant differences in the time course of cortical Ser(40) tyrosine hydroxylase phosphorylation were present in the cortex, suggesting that intermittent and sustained hypoxia-induced enzymatic activity differences are related to different phosphorylation patterns. We conclude that long-term hypoxia induces site-specific changes in tyrosine hydroxylase activity and that intermittent hypoxia elicits reduced tyrosine hydroxylase recruitment and phosphorylation compared with sustained hypoxia. Such changes may not only account for differences in enzyme activity but also suggest that, with differential regional brain susceptibility to hypoxia, recruitment of different mechanisms in response to hypoxia will elicit region-specific modulation of catecholamine response.  相似文献   

13.
Tyrosine hydroxylase phosphorylation: regulation and consequences   总被引:7,自引:0,他引:7  
The rate-limiting enzyme in catecholamine synthesis is tyrosine hydroxylase. It is phosphorylated at serine (Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro, in situ and in vivo. A range of protein kinases and protein phosphatases are able to phosphorylate or dephosphorylate these sites in vitro. Some of these enzymes are able to regulate tyrosine hydroxylase phosphorylation in situ and in vivo but the identity of the kinases and phosphatases is incomplete, especially for physiologically relevant stimuli. The stoichiometry of tyrosine hydroxylase phosphorylation in situ and in vivo is low. The phosphorylation of tyrosine hydroxylase at Ser40 increases the enzyme's activity in vitro, in situ and in vivo. Phosphorylation at Ser31 also increases the activity but to a much lesser extent than for Ser40 phosphorylation. The phosphorylation of tyrosine hydroxylase at Ser19 or Ser8 has no direct effect on tyrosine hydroxylase activity. Hierarchical phosphorylation of tyrosine hydroxylase occurs both in vitro and in situ, whereby the phosphorylation at Ser19 increases the rate of Ser40 phosphorylation leading to an increase in enzyme activity. Hierarchical phosphorylation depends on the state of the substrate providing a novel form of control of tyrosine hydroxylase activation.  相似文献   

14.
—The period during which trans-synaptic stimulation is required by the rat superior cervical ganglion for induction of tyrosine hydroxylase by reserpine has been studied. Ganglia were decentralized on one side at various times before or after an injection of reserpine. The tyrosine hydroxylase activity of the denervated and control ganglia was assayed 72 h after drug treatment. When decentralization was performed 8 h after an injection of reserpine the increase in tyrosine hydroxylase activity was blocked in the denervated ganglia. Decentralization 12 h after reserpine treatment or later had no effect on the enzyme induction. The actual increase in tyrosine hydroxylase activity occurred between 24 and 48 h after injection of reserpine.  相似文献   

15.
The effect of a single systemic injection of reserpine on tyrosine hydroxylase activity in the locus coeruleus, cerebellum, hypothalamus, and hippocampus was examined. Increases in enzyme activity were seen in all four brain areas; the time-course of the changes, however, was different in each case. In the locus coeruleus the maximum change in enzyme activity was seen 3 days after drug administration; in the cerebellum, 7-11 days; in the hypothalamus, 8-11 days; and in the hippocampus, 21 days. Since tyrosine hydroxylase in the cerebellum and hippocampus is present in terminals of neurons whose cell bodies are located in the locus coeruleus, the delayed increase in enzyme activity in cerebellum and hippocampus probably depends upon the slow rate of transport of TH molecules in these neurons.  相似文献   

16.
Exposure of rat sympathetic ganglia to 3 microgram/ml of 2.5 S nerve growth factor (NGF) resulted in a 100% increase in tyrosine hydroxylase activity within 48 h. Pulselabeling of proteins with [3H]leucine, followed by immunoprecipitation with antibodies to tyrosine hydorxylase and isolation of the precipitated enzyme by gel electrophoresis, demonstrated that the increase in tyrosine hydroxylase activity was due to enhanced de novo synthesis. The incorporation of [3H]leucine into tyrosine hydroxylase was increased by 150% compared to a 17% increase in total protein synthesis, which was not statistically significant. The fact that the half-life of pulse-labeled tyrosine hydroxylase was the same for NGF-treated and control organ cultures of superior cervical ganglia excludes the possibility that enhanced tyrosine hydroxylase labeling by NGF is due to decreased degradation. We conclude that, without modulatory factors which play a role in vivo, NGF can enhance the synthesis of tyrosine hydroxylase in sympathetic ganglia in vitro, provided organ culture conditions which permit optimal survival of adrenergic neurons are selected.  相似文献   

17.
Agouti-related peptide is expressed in the hypothalamic neurons in humans and animals. Immunohistochemical studies in Wistar rats shows significant changes in the optical density of agouti-related peptide in the neurons of the arcuate hypothalamic nucleus, as well as in their processes in the hypothalamus and nucleus accumbens after 6 h of sleep deprivation (an increase) and after 2 h of post-deprivative sleep (a decrease). Comparison of these findings with the earlier results shows the opposite trends in the changes in the optical density of agouti-related peptide and the speed of the limiting enzyme of dopamine synthesis, tyrosine hydroxylase, in the hypothalamus and in the striatonigral system. An increase in the agouti-related peptide level was accompanied by a decrease in tyrosine hydroxylase, while a decrease in agouti-related peptide, on the contrary, was accompanied by an increase in the tyrosine hydroxylase activity. Our data show the role played by agouti-related peptide as a modulator of the functional activity of the dopaminergic brain neurons. The interrelation between various functions of the body, such as food behavior, sleep, and stress, is considered to be mediated by the participation of the same neurotransmitter systems in their regulation.  相似文献   

18.
Acetylcholine, released from splanchnic nerve terminals innervating adrenal chromaffin cells, is known to increase synthesis of adrenal tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. The neuropeptide substance P is also present in the splanchnic nerve innervating the adrenal medulla, and this study examined whether substance P has any long-term effects on tyrosine hydroxylase activity and catecholamine levels in cultures of adult bovine adrenal chromaffin cells. When cultures were incubated for 3 days with substance P and carbachol, a cholinergic agonist, substance P (10(-6) M, and greater) completely inhibited the increase in tyrosine hydroxylase activity normally induced by carbachol. Long-term stimulation with carbachol also depleted endogenous catecholamines from the cells and substance P prevented this carbachol-induced depletion of catecholamine content. Substance P by itself, in the absence of carbachol, had only a slight effect on tyrosine hydroxylase activity. 8-Bromoadenosine 3':5'-cyclic monophosphate, an analogue of adenosine 3':5'-cyclic monophosphate, also increases tyrosine hydroxylase activity in chromaffin cells; however, substance P had no effect on the increase in tyrosine hydroxylase activity induced by this analogue. These results indicate that substance P's effects are relatively specific for the carbachol-induced increased in tyrosine hydroxylase activity and that the primary site of action of substance P is not a site common to the mechanism of tyrosine hydroxylase induction by carbachol and 8-bromoadenosine 3':5'-cyclic monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of basic polypeptides on the activation of adrenal tyrosine hydroxylase by ATP were investigated to show a possible involvement of macromolecular cell components in the regulation of the enzyme activity. Basic polypeptides caused an enhancement of the activation of tyrosine hydroxylase by low concentrations of ATP, and the potentiating effects of these polypeptides were observed to be dependent on their concentrations. Kinetic studies showed that basic polypeptides caused an increase in the Vmax of the ATP-activated enzyme for the cofactor without any change in the Km. These results suggest that basic polypeptides convert the enzyme from a nonsusceptible form to a form susceptible to ATP, thus resulting in the potentiation of the ATP-induced activation. Furthermore, the activation by ATP of tyrosine hydroxylase was not observed after treatment of the enzyme preparation with CM-cellulose, and the responsiveness of the enzyme treated with CM-cellulose to ATP was partially restored by addition of basic polypeptides. These observations suggest the possibility that macromolecular cell components, presumably basic proteins, may be involved in the regulation of the activity of tyrosine hydroxylase through their modulating effects on the sensitivity of the enzyme to ATP within the cell.  相似文献   

20.
Chronic nicotine (0.8 mg/kg by daily subcutaneous injection) over a 7 to 28-day period was found to increase the activity of tyrosine hydroxylase in predominantly noradrenergically innervated regions but not in dopaminergic projection areas. Increases in tyrosine hydroxylase activity were observed in dopaminergic cell body regions only after nicotine treatment for 3 to 5 days. The increase in tyrosine hydroxylase activity in noradrenergic neurones was evident first in the cell bodies in the locus coeruleus from 3 to 7 days, reaching 223% of control activities, and was followed by increases of up to 205% in the terminals up to 3 weeks later. It was then established that nicotine for 7 days was sufficient to increase the activity of the enzyme to the same extent in the terminals at 21 days even without further nicotine administration. This is consistent with axonal transport preceded by induction of the enzyme in noradrenergic cell bodies, whereas "delayed activation" might account for the transient effect seen in dopaminergic cell body regions. The response in the locus coeruleus to nicotine for 7 days was completely blocked by daily preinjection with mecamylamine but not with hexamethonium, which is consistent with the effect of nicotine on tyrosine hydroxylase being mediated by central nicotinic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号