首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
Resting whole leg blood flow and vascular conductance decrease linearly with advancing age in healthy adult men. The potential role of age-related increases in oxidative stress in these changes is unknown. Resting leg blood flow during saline and ascorbic acid infusion was studied in 10 young (25 +/- 1 yr) and 11 older (63 +/- 2 yr) healthy normotensive men. Plasma oxidized LDL, a marker of oxidative stress, was greater in the older men (P < 0.05). Absolute resting femoral artery blood flow at baseline (iv saline control infusion) was 25% lower in the older men (238 +/- 25 vs. 316 +/- 38 ml/min; P < 0.05), and it was inversely related to plasma oxidized LDL (r = -0.56, P < 0.01) in all subjects. Infusion of supraphysiological concentrations of ascorbic acid increased femoral artery blood flow by 37% in the older men (to 327 +/- 52 ml/min; P < 0.05), but not in the young men (352 +/- 41 ml/min; P = 0.28), thus abolishing group differences (P = 0.72). Mean arterial blood pressure was greater in the older men at baseline (86 +/- 4 vs. 78 +/- 2 mmHg; P < 0.05), but it was unaffected by ascorbic acid infusion (P >/= 0.70). As a result, the lower baseline femoral artery blood flow in the older men was mediated solely by a 32% lower femoral artery vascular conductance (P < 0.05). Baseline femoral vascular conductance also was inversely related to plasma oxidized LDL (r = -0.65, P < 0.01). Ascorbic acid increased femoral vascular conductance by 36% in the older men (P < 0.05) but not in the young men (P = 0.31). In conclusion, ascorbic acid infused at concentrations known to scavenge reactive oxygen species restores resting femoral artery blood flow in healthy older adult men by increasing vascular conductance. These results support the hypothesis that oxidative stress plays a major role in the reduced resting whole leg blood flow and increased leg vasoconstriction observed with aging in men.  相似文献   

2.
To determine the effect and underlying mechanisms of exercise training and the influence of age on the skin blood flow (SkBF) response to exercise in a hot environment, 22 young (Y; 18-30 yr) and 21 older (O; 61-78 yr) men were assigned to 16 wk of aerobic (A; YA, n = 8; OA, n = 11), resistance (R; YR, n = 7; OR, n = 3), or no training (C; YC, n = 7; OC, n = 7). Before and after treatment, subjects exercised at 60% of maximum oxygen consumption (VO2 max) on a cycle ergometer for 60 min at 36 degrees C. Cutaneous vascular conductance, defined as SkBF divided by mean arterial pressure, was monitored at control (vasoconstriction intact) and bretylium-treated (vasoconstriction blocked) sites on the forearm using laser-Doppler flowmetry. Forearm vascular conductance was calculated as forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure. Esophageal and skin temperatures were recorded. Only aerobic training (functionally defined a priori as a 5% or greater increase in VO2 max) produced a decrease in the mean body temperature threshold for increasing forearm vascular conductance (36.89 +/- 0.08 to 36.63 +/- 0.08 degrees C, P < 0.003) and cutaneous vascular conductance (36.91 +/- 0.08 to 36.65 +/- 0.08 degrees C, P < 0.004). Similar thresholds between control and bretylium-treated sites indicated that the decrease was mediated through the active vasodilator system. This shift was more pronounced in the older men who presented greater training-induced increases in VO2 max than did the young men (22 and 9%, respectively). In summary, older men improved their SkBF response to exercise-heat stress through the effect of aerobic training on the cutaneous vasodilator system.  相似文献   

3.
A fatty liver is associated with fasting hyperinsulinemia, which could reflect either impaired insulin clearance or hepatic insulin action. We determined the effect of liver fat on insulin clearance and hepatic insulin sensitivity in 80 nondiabetic subjects [age 43 +/- 1 yr, body mass index (BMI) 26.3 +/- 0.5 kg/m(2)]. Insulin clearance and hepatic insulin resistance were measured by the euglycemic hyperinsulinemic (insulin infusion rate 0.3 mU.kg(-1).min(-1) for 240 min) clamp technique combined with the infusion of [3-(3)H]glucose and liver fat by proton magnetic resonance spectroscopy. During hyperinsulinemia, both serum insulin concentrations and increments above basal remained approximately 40% higher (P < 0.0001) in the high (15.0 +/- 1.5%) compared with the low (1.8 +/- 0.2%) liver fat group, independent of age, sex, and BMI. Insulin clearance (ml.kg fat free mass(-1).min(-1)) was inversely related to liver fat content (r = -0.52, P < 0.0001), independent of age, sex, and BMI (r = -0.37, P = 0.001). The variation in insulin clearance due to that in liver fat (range 0-41%) explained on the average 27% of the variation in fasting serum (fS)-insulin concentrations. The contribution of impaired insulin clearance to fS-insulin concentrations increased as a function of liver fat. This implies that indirect indexes of insulin sensitivity, such as homeostatic model assessment, overestimate insulin resistance in subjects with high liver fat content. Liver fat content correlated significantly with fS-insulin concentrations adjusted for insulin clearance (r = 0.43, P < 0.0001) and with directly measured hepatic insulin sensitivity (r = -0.40, P = 0.0002). We conclude that increased liver fat is associated with both impaired insulin clearance and hepatic insulin resistance. Hepatic insulin sensitivity associates with liver fat content, independent of insulin clearance.  相似文献   

4.
Exogenous glucagon-like peptide 1(GLP-1) bioactivity is preserved in type 2 diabetic patients, resulting the peptide administration in a near-normalization of plasma glucose mainly through its insulinotropic effect. GLP-1 also reduces meal-related insulin requirement in type 1 diabetic patients, suggesting an impairment of the entero-insular axis in both diabetic conditions. To investigate this metabolic dysfunction, we evaluated endogenous GLP-1 concentrations, both at fasting and in response to nutrient ingestion, in 16 type 1 diabetic patients (age = 40.5 +/- 14yr, HbA1C = 7.8 +/- 1.5%), 14 type 2 diabetics (age = 56.5 +/- 13yr, HbA1C = 8.1 +/- 1.8%), and 10 matched controls. In postabsorptive state, a mixed breakfast (230 KCal) was administered to all subjects and blood samples were collected for plasma glucose, insulin, C-peptide and GLP-1 determination during the following 3 hours. In normal subjects, the test meal induced a significant increase of GLP-1 (30', 60': p < 0.01), returning the peptide values towards basal concentrations. In type 2 diabetic patients, fasting plasma GLP-1 was similar to controls (102.1 +/- 1.9 vs. 97.3 +/- 4.01 pg/ml), but nutrient ingestion failed to increase plasma peptide levels, which even decreased during the test (p < 0.01). Similarly, no increase in postprandial GLP-1 occurred in type 1 diabetics, in spite of maintained basal peptide secretion (106.5 +/- 1.5 pg/ml). With respect to controls, the test meal induced in both diabetic groups a significant increase in plasma glucagon levels at 60' (p < 0.01). In conclusion, either in condition of insulin resistance or insulin deficiency chronic hyperglycemia, which is a common feature of both metabolic disorders, could induce a progressive desensitization of intestinal L-cells with consequent peptide failure response to specific stimulation.  相似文献   

5.
Sex-specific influence of aging on exercising leg blood flow.   总被引:1,自引:0,他引:1  
Our previous work suggests that healthy human aging is associated with sex-specific differences in leg vascular responses during large muscle mass exercise (2-legged cycling) (Proctor DN, Parker BA. Microcirculation 13: 315-327, 2006). The present study determined whether age x sex interactions in exercising leg hemodynamics persist during small muscle mass exercise that is not limited by cardiac output. Thirty-one young (20-30 yr; 15 men/16 women) and 31 older (60-79 yr; 13 men/18 women) healthy, normally active adults performed graded single-leg knee extensions to maximal exertion. Femoral artery blood velocity and diameter (Doppler ultrasound), heart rate (ECG), and beat-to-beat arterial blood pressure (mean arterial pressure, radial artery tonometry) were measured during each 3-min work rate (4.8 and 8 W/stage for women and men, respectively). The results (means +/- SE) were as follows. Despite reduced resting leg blood flow and vascular conductance, older men exhibited relatively preserved exercising leg hemodynamic responses. Older women, by contrast, exhibited attenuated hyperemic (young: 52 +/- 3 ml.min(-1).W(-1); vs. older: 40 +/- 4 ml.min(-1).W(-1); P = 0.02) and vasodilatory responses (young: 0.56 +/- 0.06 ml.min(-1).mmHg(-1).W(-1) vs. older: 0.37 +/- 0.04 ml.min(-1).mmHg(-1) W(-1); P < 0.01) to exercise compared with young women. Relative (percentage of maximal) work rate comparisons of all groups combined also revealed attenuated vasodilator responses in older women (P < 0.01 for age x sex x work rate interaction). These sex-specific age differences were not abolished by consideration of hemoglobin, quadriceps muscle, muscle recruitment, and mechanical influences on muscle perfusion. Collectively, these findings suggest that local factors contribute to the sex-specific effects of aging on exercising leg hemodynamics in healthy adults.  相似文献   

6.
We examined the effect of exercise on postprandial hypertriglyceridemia (PHTG) and insulin resistance in individuals with metabolic syndrome. Subjects were 10 hypertriglyceridemic men with insulin resistance [age = 35.0 +/- 1.8 yr, body weight = 90.7 +/- 3.3 kg, fasting triglyceride (TG) = 2.6 +/- 0.4 mmol/l, peak oxygen consumption ((.)Vo(2peak)) = 36.0 +/- 1.3 ml(-1).kg(-1).min(-1), and homeostatic model assessment of insulin resistance (HOMA-IR)= 3.1 +/- 0.3]. Each participant performed a control trial (Ctr; no exercise) and three exercise trials at 60% of their (.)Vo(2peak) for 30 min (30 min-Ex), 45 min (45 min-Ex) and 60 min (60 min-Ex). All subjects had a fat meal in each trial. In the exercise trials, the subject jogged on a treadmill for a designated duration of 12 h before ingestion of a fat meal. Blood samples were taken at 0 h (before the meal) and at 2, 4, 6, and 8 h after the meal. The plasma TG, area score under TG concentration curve over an 8-h period (TG AUC) after the meal, and HOMA-IR were analyzed. The TG AUC scores in both the 45 min-Ex and 60 min-Ex were 31 and 33% lower, respectively, than Ctr (P < 0.02). There were no significant differences in TG AUC scores between the 30 min-Ex and the Ctr (P > 0.05). There were no trial differences in the fasting plasma glucose concentration (P > 0.05). HOMA-IR values in the 30 min-Ex, 45 min-Ex, and 60 min-Ex trials were lower than the Ctr (P < 0.03), but no significant differences were found in HOMA-IR among the exercise trials. The results suggest that for physically inactive individuals with metabolic syndrome, exercising at moderate intensity for 45 min effectively attenuates PHTG while exercise for 30 min is sufficient to improve insulin action.  相似文献   

7.
The interactions between exercise, vascular and metabolic plasticity, and aging have provided insight into the prevention and restoration of declining whole body and small muscle mass exercise performance known to occur with age. Metabolic and vascular adaptations to normoxic knee-extensor exercise training (1 h 3 times a week for 8 wk) were compared between six sedentary young (20 +/- 1 yr) and six sedentary old (67 +/- 2 yr) subjects. Arterial and venous blood samples, in conjunction with a thermodilution technique facilitated the measurement of quadriceps muscle blood flow and hematologic variables during incremental knee-extensor exercise. Pretraining, young and old subjects attained a similar maximal work rate (WR(max)) (young = 27 +/- 3, old = 24 +/- 4 W) and similar maximal quadriceps O(2) consumption (muscle Vo(2 max)) (young = 0.52 +/- 0.03, old = 0.42 +/- 0.05 l/min), which increased equally in both groups posttraining (WR(max), young = 38 +/- 1, old = 36 +/- 4 W, Muscle Vo(2 max), young = 0.71 +/- 0.1, old = 0.63 +/- 0.1 l/min). Before training, muscle blood flow was approximately 500 ml lower in the old compared with the young throughout incremental knee-extensor exercise. After 8 wk of knee-extensor exercise training, the young reduced muscle blood flow approximately 700 ml/min, elevated arteriovenous O(2) difference approximately 1.3 ml/dl, and increased leg vascular resistance approximately 17 mmHg x ml(-1) x min(-1), whereas the old subjects revealed no training-induced changes in these variables. Together, these findings indicate that after 8 wk of small muscle mass exercise training, young and old subjects of equal initial metabolic capacity have a similar ability to increase quadriceps muscle WR(max) and muscle Vo(2 max), despite an attenuated vascular and/or metabolic adaptation to submaximal exercise in the old.  相似文献   

8.
Defective insulin-dependent vasodilation might contribute importantly to metabolic and vascular abnormalities of the metabolic syndrome (MetS). However, despite extensive investigation, the precise mechanisms involved in insulin's vasoactive effects have not been fully elucidated. Therefore, this study sought to better characterize insulin's physiological actions on vascular reactivity and their potential derangement in the MetS. Forearm blood flow responses to graded doses of acetylcholine, sodium nitroprusside, and verapamil were assessed by strain-gauge plethysmography in patients with obesity-related MetS (n = 20) and in matched controls (n = 18) before and after intra-arterial infusion of insulin (0.2 mU·kg(-1)·min(-1)). Possible involvement of increased oxidative stress in the impaired insulin-stimulated vasodilator responsiveness of patients with MetS (n = 12) was also investigated using vitamin C (25 mg/min). In control subjects, significant potentiation of the vasodilator responses to acetylcholine, nitroprusside, and verapamil was observed after insulin infusion (all P < 0.05). However, no significant change in vasodilator reactivity to either of these drugs was observed following hyperinsulinemia in patients with MetS (all P > 0.05). Interestingly, administration of vitamin C to patients with MetS during hyperinsulinemia significantly enhanced the vasodilator responsiveness to acetylcholine, nitroprusside, and verapamil (all P < 0.05 vs. hyperinsulinemia alone). In conclusion, insulin exerts a generalized facilitatory action on vasodilator reactivity, and this effect is impaired in patients with MetS likely because of increased oxidative stress. Given the importance of vasodilator reactivity in affecting glucose disposal and vascular homeostasis, this defect may then contribute to the development of metabolic and vascular complications in insulin-resistant states.  相似文献   

9.
As humans spend a significant amount of time in the postprandial state, we examined whether vascular reactivity (a key indicator of cardiovascular health) was different after a high‐fat meal in 11 obese (median BMI 46.4, age 32.1 ± 6.3 years, 7 men) and 11 normal weight (median BMI 22.6) age‐ and sex‐matched controls. At baseline and 1 and 3 h postmeal, blood pressure (BP), heart rate (HR), reactive hyperemia peripheral artery tonometry (RH‐PAT) index, radial augmentation index adjusted for HR (AIx75), brachial pulse wave velocity (PWVb), glucose, insulin, total and high‐density lipoprotein (HDL) cholesterol, and triglycerides were measured. Brachial flow‐mediated dilatation (FMD) and, by venous plethysmography, resting and hyperemic forearm blood flows (FBFs) were measured at baseline and 3 h. At baseline, obese subjects had higher systolic BP, HR, resting FBF, insulin and equivalent FMD, RH‐PAT, hyperemic FBF, AIx75, PWVb, glucose, total cholesterol, triglycerides, and lower HDL cholesterol. In obese and lean subjects, FMD at baseline and 3 h was not significantly different (6.2 ± 1.7 to 5.8 ± 4.3% for obese and 4.7 ± 4.1 to 4.3 ± 3.9% for normal weight, P = 0.975 for group × time). The meal did not produce significant changes in RH‐PAT, hyperemic FBF, and PWVb in either group (P > 0.1 for the effect of time and for group × time interactions). In conclusion, the vascular responses to a high‐fat meal are similar in obese and normal weight young adults. An exaggerated alteration in postprandial vascular reactivity is thus unlikely to contribute importantly to the increased cardiovascular risk of obesity.  相似文献   

10.
Using (31)P magnetic resonance spectroscopy, creatine kinase (CK) reaction kinetics was assessed in the forearm flexor digitorum profundus muscle of healthy young (n = 11, age 34.7 +/- 5 yr) and older (n = 20, age 73.5 +/- 8 yr) subjects at rest, intermittent exercise at 20% maximum voluntary contraction (MVC), and 40% MVC. Exercise resulted in a significant increase in the average ratio of inorganic phosphate (P(i)) to phosphocreatine (PCr) from resting values of 0.073 +/- 0.031 (young) and 0.082 +/- 0.037 (older) to 0. 268 +/- 0.140 (young, P < 0.01) and 0.452 +/- 0.387 (older, P < 0. 01) at 40% MVC. At 40% MVC, intracellular pH decreased significantly, from resting values of 7.08 +/- 0.08 (young) and 7.08 +/- 0.11 (older) to 6.84 +/- 0.19 (young, P < 0.05) and to 6.75 +/- 0.25 (older, P < 0.05). Average values of the pseudo-first-order reaction rate k((PCr-->ATP)) at rest were 0.07 +/- 0.04 s(-1) in the young and 0.07 +/- 0.03 s(-1) in the older group. At both exercise levels, the reaction rate constant increased compared with the resting value, but only the difference between the resting value and the 20% MVC value, which showed an 86% higher reaction rate constant in both groups, reached statistical significance (P < 0.05). No difference in the reaction rate constant between the young and older groups was observed at either exercise level. As with k((PCr-->ATP)), the average phosphorus flux through the CK reaction increased during exercise at 20% MVC (P < 0.05 in the older group) but decreased toward resting values at 40% MVC in both groups. The data in our study suggest that normal aging does not significantly affect the metabolic processes associated with the CK reaction.  相似文献   

11.
Diastolic intraventricular pressure gradients (IVPGs) are a measure of the ability of the ventricle to facilitate its filling using diastolic suction. We assessed 15 healthy young but sedentary subjects, aged <50 yr (young subjects; age, 35 +/- 9 yr); 13 healthy but sedentary seniors, aged >65 yr with known reductions in ventricular compliance (elderly sedentary subjects; age, 70 +/- 4 yr); and 12 master athletes, aged >65 yr, previously shown to have preserved ventricular compliance (elderly fit subjects; age, 68 +/- 3 yr). Pulmonary capillary wedge pressure (PCWP) and echocardiography measurements were performed at baseline, during load manipulation by lower body negative pressure at -15 and -30 mmHg, and after saline infusion of 10 and 20 ml/kg (elderly) or 15 and 30 ml/kg (young). IVPGs were obtained from color M-mode Doppler echocardiograms. Baseline IVPGs were lower (1.2 +/- 0.4 vs. 2.4 +/- 0.7 mmHg, P < 0.0001), and the time constant of pressure decay (tau(0)) was longer (60 +/- 10 vs. 46 +/- 6 ms, P < 0.0001) in elderly sedentary than in young subjects, with no difference in PCWP. Although PCWP changes during load manipulations were similar (P = 0.70), IVPG changes were less prominent in elderly sedentary than in young subjects (P = 0.02). Changes in stroke volume and IVPGs during loading manipulations correlated (r = 0.96, P = 0.0002). PCWP and tau(0) were strong multivariate correlates of IVPGs (P < 0.001, for both). IVPG response to loading interventions in elderly sedentary and elderly fit subjects was similar (P = 0.33), despite known large differences in ventricular compliance. The ability to regulate IVPGs during changes in preload is impaired with aging. Preserving ventricular compliance during aging by lifelong exercise training does not prevent this impairment.  相似文献   

12.
Groups of endurance-trained masters athletes (60 +/- 2 yr), older untrained men (62 +/- 1 yr), lean older untrained men (61 +/- 2 yr), endurance-trained young athletes (26 +/- 1 yr), and young untrained men (28 +/- 1 yr) were studied to obtain information on the separate effects of age, physical activity, and body fatness on glucose tolerance and insulin sensitivity. Each subject underwent an oral 100-g glucose tolerance test. Skinfold thickness was determined at six sites. The trained groups had a higher maximum O2 uptake capacity and lower sum of skinfolds than their sedentary peers. The lean older untrained group had a sum of skinfolds similar to that of the young untrained group. The masters athletes, young athletes, and young untrained men exhibited similar glucose tolerance whereas the two older untrained groups had an almost twofold greater total area under the glucose curve (P less than 0.05). The masters and young athletes had significantly blunted plasma insulin responses compared with the other three groups (P less than 0.05). The young and the lean older untrained groups had similar plasma insulin responses with significantly lower insulin levels than the older untrained group (P less than 0.05). These results provide evidence that regularly performed vigorous exercise can, in some individuals, prevent the deterioration of glucose tolerance and insulin sensitivity with age.  相似文献   

13.
The vascular endothelium is a site of pathological changes in patients with diabetes mellitus that may be related to severe chronic hyperglycemia. However, it is unclear whether transient hyperglycemia alters vascular function in an otherwise healthy human forearm. To test the hypothesis that acute, moderate hyperglycemia impairs endothelium-dependent forearm vasodilation, we measured vasodilator responses in 25 healthy volunteers (11 F, 14 M) assigned to one of three protocols. In protocol 1, glucose was varied to mimic a postprandial pattern (i.e., peak glucose approximately 11.1 mmol/l) commonly observed in individuals with impaired glucose tolerance. Protocol 2 involved 6 h of mild hyperglycemia (approximately 7 mmol/l). Protocol 3 involved 6 h of euglycemia. Glucose concentration was maintained with a variable systemic glucose infusion. Insulin concentrations were maintained at approximately 65 pmol/l by means of a somatostatin and "basal" insulin infusion. Glucagon and growth hormone were replaced at basal concentrations. Forearm blood flow (FBF) was calculated from Doppler ultrasound measurements at the brachial artery. In each protocol, FBF dose responses to intrabrachial acetylcholine (ACh) and sodium nitroprusside (NTP) were assessed at baseline and at 60, 180, and 360 min of glucose infusion. Peak endothelium-dependent vasodilator responses to ACh were not diminished by hyperglycemia in any trial. For example, peak responses to ACh during protocol 2 were 307 +/- 47 ml/min at euglycemic baseline and 325 +/- 52, 353 +/- 65, and 370 +/- 70 ml/min during three subsequent hyperglycemic trials (P = 0.46). Peak endothelium-independent responses to NTP infusion were also unaffected. We conclude that acute, moderate hyperglycemia does not cause short-term impairment of endothelial function in the healthy human forearm.  相似文献   

14.
During exercise, activation of the sympathetic nervous system causes reflex renal vasoconstriction. The effects of aging on this reflex are poorly understood. This study evaluated the effects of age on renal vasoconstrictor responses to handgrip. Seven older (65 +/- 9 yr) and nine younger (25 +/- 2 yr) subjects were studied. Beat-by-beat analyses of changes in renal blood flow velocity (RBV; duplex ultrasound) were performed during two handgrip paradigms. Arterial blood pressure (BP) and heart rate were also measured, and an index of renal vascular resistance (RVR) was calculated (BP/RBV). In protocol 1, fatiguing handgrip [40% of maximal voluntary contraction (MVC)] caused a greater increase in RVR in the older subjects (old 90% +/- 15 increase, young 52% +/- 4 increase; P = 0.03). During posthandgrip circulatory arrest (isolates muscle metaboreflex), the increases in RVR were only approximately 1/2 of the increase seen at end grip. In protocol 2, 15-s bouts of handgrip at graded intensities led to increases in RVR in both subject groups. This effect was not seen until 50% MVC workload (P < 0.05). RVR responses occurred early and were greater in older than in younger subjects at 50% MVC (32 +/- 6% vs. 16 +/- 5%; P = 0.02) and 70% MVC (39 +/- 11% vs. 24 +/- 8%; P = 0.02). Static exercise-induced renal vasoconstriction is enhanced with aging. Because the characteristics of this response suggest a predominant role for mechanoreceptor engagement, we hypothesize that mechanoreceptor responses are augmented with aging.  相似文献   

15.
The transfer function relating arterial pressure (AP) to cerebral blood flow velocity (CBFV) during resting conditions has been used to predict the CBFV response to hypotension. We hypothesized that this approach could predict the CBFV response to posture change in elderly individuals if impaired autoregulation allowed changes in AP to be passively transferred to CBFV. AP (Finapres) and CBFV (middle cerebral artery transcranial Doppler) were measured in 10 healthy young (age 24 +/- 1 yr) and 10 healthy elderly (age 72 +/- 3 yr) subjects during 5 min of quiet sitting and 1 min of active standing while breathing was paced at 0.25 Hz. Transfer functions between AP and CBFV changes during sitting were estimated from each full waveform in both low-frequency (LF; 0.05-0.2 Hz) and heartbeat-frequency (HBF; 0.7-1.4 Hz) ranges. The impulse-response function was used to compute changes in CBFV during posture change. The LF transfer function did not predict orthostatic changes in CBFV in either group, suggesting normal cerebral autoregulation. In the HBF range, the prediction was high in elderly (R = 0.65 +/- 0.23) but not young subjects (R = 0.19 +/- 0.35; P < 0.003, young vs. elderly). Thus rapidly acting regulatory mechanisms that reduce the transmission of beat-to-beat changes in AP to CBFV may be engaged during posture change in young but not elderly subjects.  相似文献   

16.
The development of insulin resistance in the obese individual could impair the ability to appropriately adjust metabolism to perturbations in energy balance. We investigated a 12- vs. 48-h fast on hepatic glucose production (R(a)), peripheral glucose uptake (R(d)), and skeletal muscle insulin signaling in lean and obese subjects. Healthy lean [n = 14; age = 28.0 +/- 1.4 yr; body mass index (BMI) = 22.8 +/- 0.42] and nondiabetic obese (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5) subjects were studied following a 12- and 48-h fast during 2 h of rest and a 3-h 40 mUxm(-2)xmin(-1) hyperinsulinemic-euglycemic clamp (HEC). Basal glucose R(a) decreased significantly from the 12- to 48-h fast (lean 1.96 +/- 0.23 to 1.63 +/- 0.15; obese 1.23 +/- 0.07 to 1.07 +/- 0.07 mgxkg(-1)xmin(-1); P = 0.004) and was equally suppressed during the HEC after both fasts. The increase in glucose R(d) during the HEC after the 12-h fast was significantly decreased in lean and obese subjects after the 48-h fast (lean 9.03 +/- 1.17 to 4.16 +/- 0.34, obese 6.10 +/- 0.77 to 3.56 +/- 0.30 mgxkg FFM(-1)xmin(-1); P < 0.001). After the 12- but not the 48-h fast, insulin-stimulated AKT Ser(473) phosphorylation was greater in lean than obese subjects. We conclude that 1) 48 h of fasting produces a marked decline in peripheral insulin action, while suppression of hepatic glucose production is maintained in lean and obese men and women; and 2) the magnitude of this decline is greater in lean vs. obese subjects.  相似文献   

17.
To address the question whether there are simple clinical predictors of need for insulin in the first 18 months of treatment of diabetes presenting in young adult subjects, a prospective study of 24 patients with diabetes mellitus (age: 18-40 years) was designed. At diagnosis of diabetes, age, sex, body mass index (BMI), glycemia, ketonuria, C-peptide, insulin autoantibodies, islet cell antibodies and glutamic acid decarboxylase antibodies were recorded before starting any treatment. At the end of the follow-up (18 +/- 4 months), they were divided into two groups according to their need for insulin therapy: group 1 (n=15; 62%), who needed insulin therapy, and group 2 (n=9; 38%), who did not. Each marker was related to actual need for therapy necessity. Multivariate analysis showed that BMI and age were the variables with greatest predictive value regarding need for insulin. These data reveal that the need for insulin therapy in young adult diabetic patients may be supported by the clinical criteria of age and BMI, which are both easily and quickly determined.  相似文献   

18.
In humans, under resting conditions there is an age-related decrease in myocardial fatty acid utilization (MFAU) and oxidation (MFAO) and a relative increase in myocardial glucose utilization (MGU). The impact of age on an individual's myocardial metabolic response to catecholamines is not well defined. Sixteen younger (mean age, 26 +/- 5 yr) and 14 older (mean age, 69 +/- 4 yr) volunteers underwent positron emission tomography to measure myocardial blood flow, myocardial oxygen consumption (M.VO2), MFAU, MFAO, and MGU both under resting conditions and during dobutamine infusion. In response to dobutamine administration, the rate-pressure product, myocardial blood flow, and M.VO2 measurements increased by similar amounts in both groups. No age-related differences were noted in the responses of plasma insulin, glucose, fatty acid, or lactate levels to dobutamine. With dobutamine infusion, MFAU and MFAO increased by a similar extent in both younger and older volunteers (age/dobutamine interactions, P = 0.62 and 0.75, respectively). In contrast, MGU increased with dobutamine administration in the younger (from 149 +/- 71 to 209 +/- 78 nmol.g(-1).min(-1); P = 0.04) but not in the older (from 235 +/- 147 to 176 +/- 84 nmol.g(-1).min(-1); P = 0.23; age/dobutamine interaction, P = 0.03) group. With dobutamine infusion, hearts in both younger and older volunteers responded by increasing their MFAU and MFAO values. Whereas younger hearts also responded with an increase in MGU, older hearts did not. Although the clinical significance of these findings awaits further study, these results may partially explain the impaired contractile reserve and the increased incidence of cardiovascular disease in older individuals.  相似文献   

19.
Gastric emptying is a determinant of the postprandial glycemic and cardiovascular responses to oral carbohydrate. We evaluated the effects of a solid meal on gastric emptying and the glycemic and cardiovascular responses to oral glucose in healthy older subjects. Ten subjects aged 72.1 +/- 1.9 yr were studied. Each subject had measurements of gastric emptying, blood glucose, serum insulin, blood pressure, and heart rate after ingestion of a 50-g glucose drink (300 ml) with (mixed meal) or without (liquid only) a solid meal (300 g ground beef). Gastric emptying of liquid was initially slightly more rapid (P < 0.05) after the mixed meal compared with liquid only at 5 min (92.0 +/- 1.5 vs. 96.0 +/- 1.3%) and much slower (P < 0.05) after 120 min. The time to peak blood glucose was less (39.0 +/- 4.0 vs. 67.5 +/- 10.3 min; P < 0.01) and blood glucose subsequently lower (P < 0.01) after the mixed meal. The increase in serum insulin was greater (P < 0.001) after the mixed meal. Blood pressure fell (P < 0.05) in the first 30 min, with no difference between the two meals. Increase in heart rate after both meals (P < 0.005), was greater (P < 0.05) after the mixed meal. The presence of a noncarbohydrate solid meal had discrepant effects on early and subsequent emptying of a nutrient liquid, which affects postprandial glycemia and increased heart rate.  相似文献   

20.
We sought to identify the relationship between shear stimuli and flow-mediated vasodilation and to determine whether small muscle mass exercise training could provoke limb-specific improvements in endothelial function in older subjects. In five young (22 +/- 1 yr old) and six old (71 +/- 2 yr old) subjects, ultrasound Doppler measurements were taken in the arm (brachial artery) and leg (deep and superficial femoral arteries) after suprasystolic cuff occlusion with and without ischemic exercise to evaluate flow-mediated dilation (FMD) in both limbs. Older subjects were reevaluated after 6 wk of single-leg knee extensor exercise training. Before the training, a significant FMD was observed in the arm of young (3 +/- 1%) but not old (1 +/- 1%) subjects, whereas a significant leg FMD was observed in both groups (5 +/- 1% old vs. 3 +/- 1% young). However, arm vasodilation was similar between young and old when normalized for shear rate, and cuff occlusion with superimposed handgrip exercise provoked additional shear, which proportionately improved the FMD response in both groups. Exercise training significantly improved arm FMD (5 +/- 1%), whereas leg FMD was unchanged. However, ischemic handgrip exercise did not provoke additional arm vasodilation after training, which may indicate an age-related limit to shear-induced vasodilation. Together, these data demonstrate that vascular reactivity is dependent on limb and degree of shear stimuli, challenging the convention of diminished endothelial function typically associated with age. Likewise, exercise training improved arm vasodilation, indicating some preservation of vascular plasticity with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号