首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ruptured abdominal aortic aneurysm (RAAA) repair, a combination of hemorrhagic shock and lower-torso ischemia, is associated with a 50-70% mortality. Myocardial dysfunction may contribute to the high rate of mortality after aneurysm repair. We attempted to determine whether RAAA repair results in cardiac dysfunction mediated by tumor necrosis factor-alpha (TNF-alpha). We modeled aortic rupture and repair in the rat by inducing hemorrhagic shock to a mean blood pressure of 50 mmHg for 1 h, followed by supramesenteric clamping of the aorta for 45 min. After 90 min of reperfusion, cardiac contractile function was assessed with a Langendorff preparation. Myocardial TNF-alpha, ATP and creatine phosphate (CP) levels, and markers of oxidant stress (F(2)-isoprostanes) were measured. Cardiac function in the combined shock and clamp rats was significantly depressed compared with sham-operated control rats but was similar to that noted in animals subjected to shock alone. Myocardial TNF-alpha concentrations increased 10-fold in the combined shock and clamp rats compared with sham rats, although there was no difference in myocardial ATP, CP, or F(2)-isoprostanes. TNF-alpha neutralization improved cardiac function by 50% in the combined shock and clamp rats. Hemorrhagic shock is the primary insult inducing cardiac dysfunction in this model of RAAA repair. An improvement in cardiac contractile function after immunoneutralization of TNF-alpha indicates that TNF-alpha mediates a significant portion of the myocardial dysfunction in this model.  相似文献   

3.
The p55 TNF-alpha receptor plays a critical role in T cell alloreactivity   总被引:11,自引:0,他引:11  
TNF-alpha is known to be an important mediator of tissue damage during allograft rejection and graft-vs-host disease (GVHD), but its role in supporting T cell responses to allogeneic Ags is unclear. We have studied this question by comparing normal mice with those lacking the p55 (p55 TNFR-/-) or p75 (p75 TNFR-/-) TNF-alpha receptors as donors in well-defined bone marrow transplant (BMT) models. Recipients of p55 TNFR-/- cells had significantly reduced mortality and morbidity from GVHD compared with the other two sources of T cells. In vitro, T cells lacking the p55 (but not the p75) TNF-alpha receptor exhibited decreased proliferation and production of Th1 cytokines in MLC. This defect was only partially restored by exogenous IL-2 and affected both CD4+ and CD8+ populations. CD8+ p55 TNFR-/- proliferation was impaired independently of IL-2 whereas CTL effector function was impaired in an IL-2-dependent fashion. Inhibition of TNF-alpha with TNFR:Fc in primary MLC also impaired the proliferation and Th1 differentiation of wild-type T cells. BMT mixing experiments demonstrated that the reduced ability of p55 TNFR-/- donor cells to induce GVHD was due to the absence of the p55 TNFR on T cells rather than bone marrow cells. These data highlight the importance of TNF-alpha in alloreactive T cell responses and suggest that inhibition of the T cell p55 TNF-alpha receptor may provide an additional useful therapeutic maneuver to inhibit alloreactive T cell responses following bone marrow and solid organ transplantation.  相似文献   

4.
5.
Human tumour necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine capable of killing mammalian tumour cells in vitro and in vivo, and of enhancing the proinflammatory activity of leucocytes and endothelium, the latter effects limiting its usage as an antitumour agent in humans. Using TNF-alpha mutants with a selective capacity to bind to the TNF p55 receptor (TNFR55) or to the p75 receptor (TNFR75) we show here that these two major activities of TNF-alpha can be dissociated. The TNFR55-selective mutants (R32W, E146K and R32W-S86T) which bind poorly to TNFR75 displayed similar potency to wild-type TNF in causing cytotoxicity of a human laryngeal carcinoma-derived cell line (HEp-2) and cytostasis in a human leukaemic cell line (U937). However, these TNFR55-selective mutants exhibited lower proinflammatory activity than wild-type TNF. Specifically, TNF-alpha's priming of human neutrophils for superoxide production and antibody-dependent cell-mediated cytotoxicity, platelet-activating factor synthesis and adhesion to endothelium were reduced by up to 170-fold. Activation of human endothelial cell functions represented by human umbilical venular endothelial cell (HUVEC) adhesiveness for neutrophils, E-selectin expression, neutrophil transmigration and IL-8 secretion were also reduced by up to 280-fold. On the other hand, D143F, a TNFR75-selective mutant tested either alone or in combination with TNFR55-selective mutants, did not stimulate these activities despite being able to cause cytokine production in TNFR75-transfected PC60 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
PURPOSE OF REVIEW: Toll-like receptors are key regulators of both innate and adaptive immune responses. This review outlines the recently emerged multiple roles of Toll-like receptor signaling in atherosclerosis. RECENT FINDINGS: Mice deficient in TLR4, TLR2 and MyD88 all have reduced atherosclerosis which establishes that Toll-like receptor-dependent pathways contribute to disease development. Although it is likely that total "infectious burden" contributes to atherosclerosis progression, endogenous ligands may also initiate and modulate Toll-like receptor signaling pathways. CD36, with established roles in recognition of endogenous ligands and atherosclerotic disease, facilitates TLR2 signaling and might therefore represent a bridge between endogenous lipid ligands and Toll-like receptor pathways. Furthermore, lipoprotein oxidation generates ligands that activate Toll-like receptor pathways. At the same time, Toll-like receptor activation may be inhibited by accumulating oxidized phospholipids, which could result in reduced dendritic cell maturation and impaired immunological priming. SUMMARY: Activation of Toll-like receptor signaling can promote atherosclerosis by multiple mechanisms, while some beneficial Toll-like receptor pathways may be inhibited by lipid accumulation. Due to their central role in the disease process, Toll-like receptor signaling pathways represent a target of immunomodulatory therapy with the goal of tipping the balance from excessive chronic inflammation towards resolution of inflammation, while not compromising host defense or atheroprotective immune functions.  相似文献   

7.
Acute lung injury after hemorrhagic shock (HS) is associated with the expression of tumor necrosis factor (TNF)-alpha in the lung. However, the role of TNF-alpha and its receptors in this pulmonary disorder remains obscure. This study examined the temporal relationship of pulmonary TNF-alpha production to neutrophil accumulation during HS and determined the role of TNF-alpha in neutrophil accumulation and lung leak. HS was induced in mice by removal of 30% of total blood volume. Lung TNF-alpha was measured by ELISA. Neutrophil accumulation was detected by immunofluorescent staining, and microvascular permeability was assessed using Evans blue dye. Although HS induced a slight and transient increase in lung TNF-alpha, neutrophil accumulation preceded the increase in TNF-alpha. However, lung neutrophil accumulation and lung leak were abrogated in TNF-alpha knockout mice, and both were restored by administration of recombinant TNF-alpha to TNF-alpha knockout mice before HS. Neutrophil accumulation and lung leak were abrogated in mice lacking the p55 TNF-alpha receptor, but neither was influenced by p75 TNF-alpha receptor knockout. This study demonstrates that a low level of pulmonary TNF-alpha is sufficient to mediate HS-induced acute lung injury during HS and that the p55 TNF-alpha receptor plays a dominant role in regulating the pulmonary inflammatory response to HS.  相似文献   

8.
Crimean-Congo hemorrhagic fever (CCHF) is an acute viral hemorrhagic fever. The clinical course and outcome of the CCHF infection are different in humans. Toll-like receptors (TLRs) are a family of pathogen recognition receptors. TLR8 and TLR9 contribute to the recognition of viruses. We investigated frequency of TLR8 Met1Val, TLR8 -129C/G, TLR9 -1486T/C and TLR9 2458G/A polymorphisms in CCHF patients and healthy controls. Our study was conducted between June 1 and August 31, 2007 in Cumhuriyet University Hospital, Turkey. TLR genotypes were detected using the PCR-RFLP assay in 85 CCHF patients and 171 healthy controls. We found that heterozygous plus homozygous mutant genotypes frequency for TLR8 Met1Val and for TLR9 -1486T/C were significantly higher in CCHF patients than controls (p = 0.038 and p = 0.009, respectively). The frequency of TLR8 -129G/G genotype in the fatal CCHF patients was significantly higher than that of the non-fatal patients (p = 0.026). The frequency of TLR9 -1486C/C genotype was significantly higher in fatal CCHF patients than in healthy controls (p = 0.009) and in patients with severe disease compared to non-severe disease (p = 0.044). Our findings suggest that TLR8 Met1Val, TLR8 -129C/G, and TLR9 -1486T/C polymorphisms are important on clinical course of CCHF disease.  相似文献   

9.
Tumour necrosis factor alpha (TNF-alpha) is a pro-inflammatory cytokine with pleiotropic activity that binds to two transmembrane receptors. Its role in mediating the inflammatory response to injury or infection has been well documented and it has been shown to be a causative factor in rheumatoid arthritis, inflammatory bowel disease and septic shock. Using synthetic peptide libraries composed exclusively of D-amino acids, two distinct hexapeptide families that block the binding of TNF-alpha to its receptors were identified. In the deconvolution of the library, activity increased from submillimolar to the low micromolar range with the most active compound having an IC50 of 0.33 microM. With the aid of biotinylated constructs of these hexapeptides it was possible to demonstrate that their antagonistic effect is due to specific binding to TNF-alpha and not to its receptor.  相似文献   

10.
BACKGROUND: Toll-like receptors (TLRs) recognize distinct pathogen-associated molecular patterns and trigger anti-microbial host defense responses. Several in vitro and in vivo studies in mice indicate that TLR2 and TLR4 are involved in the defense against Streptococcus pneumoniae. Studies have revealed associations between polymorphisms in TLRs and human diseases. The effect of polymorphisms in TLR2 and TLR4 in the human defense to S. pneumoniae has not been studied. METHODS: We genotyped 99 Caucasian patients with invasive pneumococcal disease and 178 Caucasian controls for the known R579H, P631H and R753Q polymorphisms in TLR2 and the D299G polymorphism in TLR4 with PCR-RFLP methods. RESULTS: The distribution of the TLR2 R579H, P631H and R753Q and TLR4 D299G variants was not significantly different between the patients and the controls. After stratification of the patient population by age, sex, diagnosis, and mortality no significant differences for the TLR2 R753Q genotype and TLR4 D299G genotype were found between various patient subgroups and between patient subgroups and the control population. It should be mentioned that for the TLR2 polymorphisms neither the control group nor the patient group contains homozygous mutant individuals. CONCLUSION: We found no association between TLR2 and TLR4 polymorphisms and invasive pneumococcal infection.  相似文献   

11.
Toll-like receptors (TLRs) are key elements in the innate immune response, functioning as pattern-recognition receptors for the detection and response to endotoxins and other microbial ligands. Inflammatory cytokines play an important role in the activation of the hypothalamic-pituitary-adrenal HPA axis during inflammation and sepsis. The newly recognized major role of TLR2 and TLR4 and the adrenal stress response during critical illnesses such as inflammation and sepsis demand comprehensive analysis of their interactions. Therefore, we analyzed TLR2 and TLR4 expression in human adrenal glands. Western blot analysis demonstrated the expression of TLR2 and TLR4 in the human adrenocortical cell line NCI-H295. Immunohistochemical analysis of normal human adrenal glands revealed TLR2 and TLR4 expression in the adrenal cortex, but not in the adrenal medulla. Considering the crucial role of the HPA axis and the innate immune response during acute sepsis or septic shock, elucidating the functional interaction of these systems should be of great clinical relevance.  相似文献   

12.
Toll-like receptors (TLR) 2 and 4 are cell surface receptors that in association with CD14 enable phagocytic inflammatory responses to a variety of microbial products. Activation via these receptors triggers signaling cascades, resulting in nuclear translocation of NF-kappa B and a proinflammatory response including TNF-alpha production. We investigated whether TLRs participate in the host response to Cryptococcus neoformans glucuronoxylomannan (GXM), the major capsular polysaccharide of this fungus. Chinese hamster ovary fibroblasts transfected with human TLR2, TLR4, and/or CD14 bound fluorescently labeled GXM. The transfected Chinese hamster ovary cells were challenged with GXM, and activation of an NF-kappa B-dependent reporter construct was evaluated. Activation was observed in cells transfected with both CD14 and TLR4. GXM also stimulated nuclear NF-kappa B translocation in PBMC and RAW 264.7 cells. However, stimulation of these cells with GXM resulted in neither TNF-alpha secretion nor activation of the extracellular signal-regulated kinase 1/2, p38, and stress-activated protein kinase/c-Jun N-terminal kinase mitogen-activated protein kinase pathways. These findings suggest that TLRs, in conjunction with CD14, function as pattern recognition receptors for GXM. Furthermore, whereas GXM stimulates cells to translocate NF-kappa B to the nucleus, it does not induce activation of mitogen-activated protein kinase pathways or release of TNF-alpha. Taken together, these observations suggest a novel scenario whereby GXM stimulates cells via CD14 and TLR4, resulting in an incomplete activation of pathways necessary for TNF-alpha production.  相似文献   

13.
14.
Toll-like receptors (TLRs) are mammalian homologues of the Drosophila Toll receptors and are thought to have roles in innate recognition of bacteria. We demonstrated that TLR 2, 4, 6, and 8 but not TLR5 were expressed on mouse bone marrow-derived mast cells (BMMCs). Using BMMCs from the genetically TLR4-mutated strain C3H/HeJ, we demonstrated that functional TLR4 was required for a full responsiveness of BMMCs to produce inflammatory cytokines (IL-1beta, TNF-alpha, IL-6, and IL-13) by LPS stimulation. TLR4-mediated stimulation of mast cells by LPS was followed by activation of NF-kappaB but not by stress-activated protein kinase/c-Jun NH2-terminal kinase signaling. In addition, in the cecal ligation and puncture-induced acute septic peritonitis model, we demonstrated that genetically mast cell-deficient W/W(v) mice that were reconstituted with TLR4-mutated BMMCs had significantly higher mortality than W/W(v) mice reconstituted with TLR4-intact BMMCs. Higher mortality of TLR4-mutated BMMC-reconstituted W/W(v) mice was well correlated with defective neutrophil recruitment and production of proinflammatory cytokines in the peritoneal cavity. Taken together, these observations provide definitive evidence that mast cells play important roles in exerting the innate immunity by releasing inflammatory cytokines and recruitment of neutrophils after recognition of enterobacteria through TLR4 on mast cells.  相似文献   

15.
We investigated the effects of hemorrhagic shock and reinfusion on the cardiac function and contractility, plasma CK and CK-MB activity and lactate concentration, oxyradical-producing activity of polymorphonuclear leukocytes (PMNL-CL), cardiac chemiluminescence (LV-CL), antioxidant enzyme activity [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX)] and malondialdehyde (MDA) concentration in anesthetized dogs to determine the role of oxyradicals in cardiac depression and cellular injury in hemorrhagic shock and reinfusion. The dogs were assigned into three groups: I (sham), 4 h duration; II (S + R), 2 h of shock followed by reinfusion for 2 h; III (SOD + S + R), as II but pretreated with PEG-SOD. Hemorrhagic shock was produced by withdrawal of blood to maintain the mean arterial pressure at 50 ± 5 mm Hg. Cardiac function and contractility were depressed during hemorrhagic shock. Plasma CK, CK-MB and lactate increased during shock. Following reinfusion after 2 h of shock hemodynamic parameters and plasma lactate tended to return towards control values. Plasma CK and CK-MB, PMNL-CL and cardiac MDA, total-, Mn- and CuZn-SOD activity increased while LV-CL decreased. In spite of the increase in the antioxidant reserve, there was oxidative damage. Pretreatment with SOD attenuated the deleterious effects of shock and reinfusion on the cardiovascular function, plasma CK, and CK-MB, PMNL-CL, cardiac MDA, SOD, and LV-CL. Protection was incomplete for cardiovascular function and plasma CK and CK-MB. These results suggest that oxyradicals may partly be involved in the deterioration of cardiovascular function and cellular injury during hemorrhagic shock and reinfusion.  相似文献   

16.
The reported requirement of functional Toll-like receptor (TLR)4 for resistance to Gram-negative pyelonephritis prompted us to localize the expression of TLR2 and TLR4 mRNA in the kidney at the cellular level by in situ hybridization. The majority of the constitutive TLR2 and TLR4 mRNA expression was found to be strategically located in the renal epithelial cells. Assuming that the TLR mRNA expression is representative of apical protein expression, this suggests that these cells are able to detect and react with bacteria present in the lumen of the tubules. To gain insight in the regulation of TLR expression during inflammation, we used a model for renal inflammation. Renal inflammation evoked by ischemia markedly enhanced synthesis of TLR2 and TLR4 mRNA in the distal tubular epithelium, the thin limb of Henle's loop, and collecting ducts. The increased renal TLR4 mRNA expression was associated with significant elevation of renal TLR4 protein expression as evaluated by Western blotting. Using RT-PCR, the enhanced TLR2 and TLR4 mRNA expression was shown to be completely dependent on the action of IFN-gamma and TNF-alpha. These results indicate a potential mechanism of increased immunosurveillance during inflammation at the site in which ascending bacteria enter the kidney tissue, i.e., the collecting ducts and the distal part of the nephron.  相似文献   

17.
Neutrophil responses to commercial LPS, a dual Toll-like receptor (TLR)2 and TLR4 activator, are regulated by TLR expression, but are amplified by contaminating monocytes in routine cell preparations. Therefore, we investigated the individual roles of TLR2 and TLR4 in highly purified, monocyte-depleted neutrophil preparations, using selective ligands (TLR2, Pam(3)CysSerLys(4) and Staphylococcus aureus peptidoglycan; TLR4, purified LPS). Activation of either TLR2 or TLR4 caused changes in adhesion molecule expression, respiratory burst (alone, and synergistically with fMLP), and IL-8 generation, which was, in part, dependent upon p38 mitogen-activated protein kinase signaling. Neutrophils also responded to Pam(3)CysSerLys(4) and purified LPS with down-regulation of the chemokine receptor CXCR2 and, to a lesser extent, down-regulation of CXCR1. TLR4 was the principal regulator of neutrophil survival, and TLR2 signals showed relatively less efficacy in preventing constitutive apoptosis over short time courses. TLR4-mediated neutrophil survival depended upon signaling via NF-kappa B and mitogen-activated protein kinase cascades. Prolonged neutrophil survival required both TLR4 activation and the presence of monocytes. TLR4 activation of monocytes was associated with the release of neutrophil survival factors, which was not evident with TLR2 activation, and TLR2 activation in monocyte/neutrophil cocultures did not prevent late neutrophil apoptosis. Thus, TLRs are important regulators of neutrophil activation and survival, with distinct and separate roles for TLR2 and TLR4 in neutrophil responses. TLR4 signaling presents itself as a pharmacological target that may allow therapeutic modulation of neutrophil survival by direct and indirect mechanisms at sites of inflammation.  相似文献   

18.
19.
The aim of the study was to investigate whether polymorphisms in genes encoding Toll-like receptors (TLR2 and TLR4) may modify relative risk for development of asthma or allergic rhinitis. The results showed that the genotype and allele frequencies of the TLR2 Arg753Gln and TLR4 Asp299Gly polymorphisms were not significantly different between asthmatic children or allergic rhinitis when compared to controls (p>0.05 for each) or even when compared further with IgE level. However, it was shown that the mutant allele of TLR2 or TLR4 polymorphisms were significantly associated with the moderate-severe group compared to the mild group in both atopic asthmatics and allergic rhinitis group (p>0.001 for each). In conclusion, our study demonstrates a lack of association of TLR2 and TLR4 polymorphisms with asthma and allergic rhinitis but suggests significant association between these genetic variants and the disease severity.  相似文献   

20.
Lipopolysaccharide and D-galactosamine induced lethality and apoptotic liver injury is dependent on endogenously produced tumor necrosis factor (TNF)-alpha. The present study was undertaken to determine whether membrane-associated or secreted TNF-alpha signaling through the p55 or p75 receptor was responsible for survival and hepatic injury after lipopolysaccharide administration in D-galactosamine-sensitized mice. Transgenic mice expressing null forms of TNF-alpha, the p55 and p75 receptor, and mice expressing only a cell-associated form of TNF-alpha were challenged with 8 mg D-galactosamine and 100 ng lipopolysaccharide. Mortality and apoptotic liver injury were only seen in wild-type and p75 knockout mice. p75 Knockout mice had significantly higher concentrations of plasma TNF-alpha than any other experimental group (P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号