首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vascular endothelial hyperpermeability is one of the manifestations of endothelial dysfunction. Resveratrol (Res) is considered to be beneficial in protecting endothelial function. However, currently, the exact protective effect and involved mechanisms of Res on endothelial dysfunction-hyperpermeability have not been completely clarified. The aim of present study is to investigate the effects of Res on amelioration of endothelial hyperpermeability and the role of caveolin-1 (Cav-1)/endothelial nitric oxide synthase (eNOS) pathway. Adult male Wistar rats were treated with a normal or high-fat/sucrose diet (HFS) with or without Res for 13 weeks. HFS and in vitro treatment with high glucose increased hyperpermeability in rat aorta, heart, liver and kidney and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Application of Res reversed the changes in eNOS and Cav-1 expressions in aorta and heart of rats fed HFS and in BAECs incubated with high glucose. Res stimulated the formation of NO inhibited by high glucose in BAECs. Beta-Cyclodextrin (β-CD), caveolae inhibitor, showed the better beneficial effect than Res alone to up-regulate eNOS phosphorylative levels, while NG-Nitro-77 L-arginine methyl ester (L-NAME), eNOS inhibitor, had no effect on Cav-1 expression. Our studies suggested that HFS and in vitro treatment with high glucose caused endothelial hyperpermeability, which were ameliorated by Res at least involving Cav-1/eNOS regulation.  相似文献   

3.
Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this process required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF+KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.  相似文献   

4.
Bradykinin (BK) and vascular endothelial growth factor (VEGF)-165 stimulate vasodilatation, microvascular permeability, and angiogenesis via the activation of the B2-type and KDR/Flk-1 receptors. To delineate the signal transduction pathways distal to the receptor activation in microvascular permeability, we compared their effects on two downstream targets, i.e. endothelial nitric-oxide (NO) synthase (eNOS) and F-actin, in primary cultures of cardiac capillary endothelial cells. The two mediators induced a similar cytoskeletal reorganization and both the translocation and activation of eNOS, leading to NO release within the first minutes of cell exposure. At the same time, BK produced the tyrosine phosphorylation and internalization of KDR/Flk-1 as did VEGF itself. This transactivation was blocked by the selective inhibitor of VEGF receptor tyrosine kinase activity but not by inhibitors of epidermal growth factor receptor or protein kinase C activity. The selective inhibitor of VEGF receptor tyrosine kinase activity totally prevented the effects of VEGF but only partially inhibited NO release induced by BK without affecting the concomitant cytoskeletal reorganization. Thus, BK transactivated KDR/Flk-1 through an intrinsic kinase activity of KDR/Flk-1, resulting in a further eNOS activation in endothelial cells. This represents a novel mechanism whereby a G protein-coupled receptor activates a receptor tyrosine kinase to generate biological response.  相似文献   

5.
In this study, an in vitro model of the blood-brain barrier,consisting of porcine brain-derived microvascular endothelial cells(BMEC), was used to evaluate the mechanism of hypoxia-induced hyperpermeability. We show that hypoxia-induced permeability in BMECwas completely abolished by a neutralizing antibody to vascular endothelial growth factor (VEGF). In contrast, under normoxic conditions, addition of VEGF up to 100 ng/ml did not alter monolayer barrier function. Treatment with either hypoxia or VEGF under normoxicconditions induced a twofold increase in VEGF binding sites and VEGFreceptor 1 (Flt-1) mRNA expression in BMEC. Hypoxia-induced permeability also was prevented by the nitric oxide (NO) synthase inhibitor NG-monomethyl-L-arginine,suggesting that NO is involved in hypoxia-induced permeability changes,which was confirmed by measurements of the cGMP level. During normoxia,treatment with VEGF (5 ng/ml) increased permeability as well as cGMPcontent in the presence of several antioxidants. These results suggestthat hypoxia-induced permeability in vitro is mediated by the VEGF/VEGFreceptor system in an autocrine manner and is essentially dependent onreducing conditions stabilizing the second messenger NO as the mediatorof changes in barrier function of BMEC.  相似文献   

6.
We tested the hypothesis that VEGF regulates endothelial hyperpermeability to macromolecules by activating the ERK-1/2 MAPK pathway. We also tested whether PKC and nitric oxide (NO) mediate VEGF-induced increases in permeability via the ERK-1/2 pathway. FITC-Dextran 70 flux across human umbilical vein endothelial cell monolayers served as an index of permeability, whereas Western blots assessed the phosphorylation of ERK-1/2. VEGF-induced hyperpermeability was inhibited by antisense DNA oligonucleotides directed against ERK-1/2 and by blockade of MEK and Raf-1 activities (20 microM PD-98059 and 5 microM GW-5074). These blocking agents also reduced ERK-1/2 phosphorylation. The PKC inhibitor bisindolylmaleimide I (10 microM) blocked both VEGF-induced ERK-1/2 activation and hyperpermeability. The NO synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (200 microM) and the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidiazoline-1-oxyl-3-oxide (100 microM) abolished VEGF-induced hyperpermeability but did not block ERK-1/2 phosphorylation. These observations demonstrate VEGF-induced hyperpermeability involves activation of PKC and NOS as well as Raf-1, MEK, and ERK-1/2. Furthermore, our data suggest that ERK-1/2 and NOS are elements of different signaling pathways in VEGF-induced hyperpermeability.  相似文献   

7.
Zhang G  Zhou J  Fan Q  Zheng Z  Zhang F  Liu X  Hu S 《FEBS letters》2008,582(19):2957-2964
Human bone mesenchymal stem cells (hMSCs) can differentiate into endothelial cells (ECs), so we aimed to investigate whether hMSCs could also differentiate into a specific arterial or venous ECs. hMSCs were induced to differentiate into ECs using vascular endothelial growth factor (VEGF). Low VEGF concentration (50ng/ml) upregulated the venous marker gene EphB4, however high concentration (100ng/ml) upregulated the arterial marker genes ephrinB2, Dll4 and Notch4, and downregulated the venous marker genes EphB4 and COUP-TFll. This VEGF dose-dependent induction was largely blocked by inhibition of the Notch pathway in hMSCs treated with gamma-secretase inhibitor. Therefore, differentiation of hMSCs into arterial- or venous-specific ECs depends on VEGF and is regulated by the Notch pathway.  相似文献   

8.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor (VPF), has been shown to increase potently the permeability of endothelium and is highly expressed in breast cancer cells. In this study, we investigated the role of VEGF/VPF in breast cancer metastasis to the brain. Very little is known about the role of endothelial integrity in the extravasation of breast cancer cells to the brain. We hypothesized that VEGF/VPF, having potent vascular permeability activity, may support tumor cell penetration across blood vessels by inducing vascular leakage. To examine this role of VEGF/VPF, we used a Transwell culture system of the human brain microvascular endothelial cell (HBMEC) monolayer as an in vitro model for the blood vessels. We observed that VEGF/VPF significantly increased the penetration of the highly metastatic MDA-MB-231 breast cancer cells across the HBMEC monolayer. We found that the increased transendothelial migration (TM) of MDA-MB-231 cells resulted from the increased adhesion of tumor cells onto the HBMEC monolayer. These effects (TM and adhesion of tumor cells) were inhibited by the pre-treatment of the HBMEC monolayer with the VEGF/VPF receptor (KDR/Flk-1) inhibitor, SU-1498, and the calcium chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl)ester. These treatments of the HBMEC monolayer also inhibited VEGF/VPF-induced permeability and the cytoskeletal rearrangement of the monolayer. These data suggest that VEGF/VPF can modulate the TM of tumor cells by regulating the integrity of the HBMEC monolayer. Taken together, these findings indicate that VEGF/VPF might contribute to breast cancer metastasis by enhancing the TM of tumor cells through the down-regulation of endothelial integrity.  相似文献   

9.
Vascular endothelial growth factor (VEGF), a potent mediator of endothelial proliferation and migration, has an important role also in brain edema formation during hypoxia and ischemia. VEGF binds to the tyrosine kinase receptors Flt-1 and Flk-1. Yet, their relative importance for hypoxia-induced hyperpermeability is not well understood. We used an in vitro blood-brain barrier (BBB) model consisting of porcine brain microvascular endothelial cells (BMEC) to determine the role of Flt-1 in VEGF-induced endothelial cell (EC) barrier dysfunction. Soluble Flt-1 abolished hypoxia/VEGF-induced hyperpermeability. Furthermore, selective antisense oligonucleotides to Flt-1, but not to Flk-1, inhibited hypoxia-induced permeability changes. Consistent with these data, addition of the receptor-specific homolog placenta-derived growth factor, which binds Flt-1 but not Flk-1, increased endothelial permeability to the same extent as VEGF, whereas adding VEGF-E, a viral VEGF molecule from the orf virus family activating Flk-1 and neuropilin-1, but not Flt-1, did not show any effect. Using the carcinoma submandibular gland cell line (CSG), only expressing Flt-1, it was demonstrated that activation of Flt-1 is sufficient to induce hyperpermeability by hypoxia and VEGF. Hyperpermeability, induced by hypoxia/VEGF, depends on activation of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), nitric oxide synthase (NOS) and protein kinase G (PKG). The activation of the PI3-K/Akt pathway by hypoxia was confirmed using an in vivo mice hypoxia model. These results demonstrate that hypoxia/VEGF-induced hyperpermeability can be mediated by activation of Flt-1 independently on the presence of Flk-1 and indicate a central role for activation of the PI3-K/Akt pathway, followed by induction of NOS and PKG activity.  相似文献   

10.
Cheng JJ  Huang NK  Chang TT  Wang DL  Lu MK 《Life sciences》2005,76(26):3029-3042
The main purposes of this study were to investigate the regulation of polysaccharides isolated from A. cinnamomea on vascular endothelial growth factor (VEGF)-induced cyclin D1 expression and down stream signaling pathway that may correlate with their anti-angiogenc effects in endothelial cells (ECs). Crude and fractionated polysaccharides (Fra-1 to Fra-4) of A. cinnamomea showed slightly toxicity to ECs as compared with their inhibition concentration on angiogenic-related gene expression. The crude extract and fractionated fractions, except for Fra-2, of A. cinnamomea polysaccharides significantly decreased VEGFR2 phosphorylation on tyrosine 1054/1059, cyclin D1 promotor activity, and protein expression induced by VEGF. Crude extract of A. cinnamomea polysaccharides inhibited the binding of VEGF to KDR/flk-1 in a dose-dependent manner. These results indicated that inhibition of VEGF interaction with VEGF receptor 2 is the mechanism serves A. cinnamomea as a protective mechanism composing the anti-angiogenesis function. Furthermore, A. cinnamomea polysaccharides also blocked VEGF-induced migration and capillary-like tube formation of ECs on Matrigel. Taken together, these results indicate that A. cinnamomea polysaccharides inhibit cyclin D1 expression through inhibition of VEGF receptor signaling, leading to the suppression of angiogenesis.  相似文献   

11.
Endothelial cells express two related vascular endothelial growth factor (VEGF) receptor tyrosine kinases, KDR (kinase-insert domain containing receptor, or VEGFR-2) and Flt-1 (fms-like tyrosine kinase, or VEGFR-1). Although considerable experimental evidence links KDR activation to endothelial cell mitogenesis, there is still significant uncertainty concerning the role of individual VEGF receptors for other biological effects such as vascular permeability. VEGF mutants that bind to either KDR or Flt-1 with high selectivity were used to determine which of the two receptors serves to mediate different VEGF functions. In addition to mediating mitogenic signaling, selective KDR activation was sufficient for the activation of intracellular signaling pathways implicated in cell migration. KDR stimulation caused tyrosine phosphorylation of both phosphatidylinositol 3-kinase and phospholipase Cgamma in primary endothelial cells and stimulated cell migration. KDR-selective VEGF was also able to induce angiogenesis in the rat cornea to an extent indistinguishable from wild type VEGF. We also demonstrate that KDR, but not Flt-1, stimulation is responsible for the induction of vascular permeability by VEGF.  相似文献   

12.
Angiogenesis is fundamental for human endometrial development and differentiation necessary for implantation. These vascular changes are thought to be mediated by the vascular endothelial growth factor (VEGF), whose specific receptors have not been examined in detail thus far. We conducted the present study to determine, by immunocytochemistry and computerized image analysis of the functionalis, the expression and modulation of the receptors Flk-1/KDR and Flt-1, which mediate VEGF effects on endothelial mitogenicity, chemotaxis, and capillary permeability. VEGF receptors are expressed mainly in endometrial endothelial cells, with variations of intensity and number of stained capillaries related to the phase of the cycle. The number of capillaries immunostained for Flk-1/KDR was maximal in the proliferative phase (ratio Flk-1/CD34: 1), twice as high as the number of Flt-1-expressing capillaries (ratio Flt-1/CD34: 0.47). The staining intensity for Flk-1 decreased during the late proliferative and early secretory phases, to increase again in the midsecretory period. The number of Flt-1-labeled capillaries was about 2-fold higher in the secretory than in the proliferative phase; however, the proportion of Flt-1-positive cells did not change, owing to the associated increase in vascular density that characterizes progression of the functionalis from the proliferative to the secretory stage. The staining intensity for Flt-1 was higher during the late proliferative and secretory phases (especially in the midsecretory phase) and the premenstrual period. In contrast, the proportion of capillaries expressing Flk-1/KDR decreased in the secretory phase (ratio Flk-1/Von Willebrand factor: 0.55). Enhanced expression of Flk-1/KDR, and of Flt-1, on narrow capillary strands at the beginning of and during the proliferative phase may account for the rapid capillary growth associated with endometrial regeneration following menstrual shedding. The high coexpression of Flk-1/KDR and Flt-1 observed on capillaries during the midsecretory period correlates with an increase of endometrial microvascular density and of permeability characteristic of this phase of the cycle, which is a prerequisite for implantation. Finally, strong expression of Flt-1, but not Flk-1/KDR, was observed on dilated capillaries during the premenstrual period and the late proliferative phase, suggesting preferential association of Flt-1 with nonproliferating capillaries at those times; activation of this receptor by VEGF could be involved in premenstrual vascular hyperpermeability, edema, and extravasation of leukocytes. In addition to the endothelial localization, we found that epithelial cells expressed Flt-1 and Flk-1/KDR. We conclude that Flt-1 and Flk-1/KDR in the functionalis are modulated in parallel or independently according to the phase of the cycle, and that these changes are responsible for VEGF actions on endometrial vascular growth and permeability. The molecular mechanisms concerning these regulations will require further investigation.  相似文献   

13.
14.
15.
Xia L  Ding F  Zhu JH  Fu GS 《Human cell》2011,24(3):127-133
Endothelial injury usually underlies the initial pathologic step of cardiovascular diseases. Primary endothelial cell (EC) apoptosis and secondary hyperproliferation both contribute to the development of atherosclerosis and luminal occlusion. In order to investigate the effects of resveratrol (RSV) on EC apoptosis, we applied high shear stress (HSS) with proinflammatory factors [tumor necrosis factor alpha (TNF-α) plus cycloheximide] to human pulmonary microvascular ECs (PMVECs) through an artificial capillary system. Intracellular reactive oxygen species (ROS) was measured by spectrofluorometry using dihydrorhodamine 123 fluorescent probe. Apoptosis and proliferation was determined by flow cytometric analysis. Protein expression was examined by Western blot. HSS plus inflammation significantly raised the ROS and the apoptosis level of PMVECs, which could be diminished by RSV pretreatment. In a 7-days incubation assay, RSV effectively inhibited the initial increase in apoptosis and thereby prevented subsequent PMVEC hyperproliferation induced by HSS plus inflammation. Mercaptosuccinate, a glutathione peroxidase (GPx-1) inhibitor or nicotinamide, a silent information regulator 2/sirtuin 1 (SIRT1) inhibitor could attenuate the antiapoptotic action of RSV on PMVECs; and RSV treatment upregulated GPx-1 and SIRT1 expression in PMVECs. In conclusion, RSV, probably by activating SIRT1 signaling pathway, inhibits the oxidative-stress-dependent phenotypical shift of ECs induced by HSS and proinflammatory factors in vitro.  相似文献   

16.
The mechanism by which vascular endothelial growth factor (VEGF) regulates endothelial nitric-oxide synthase (eNOS) expression is presently unclear. Here we report that VEGF treatment of bovine adrenal cortex endothelial cells resulted in a 5-fold increase in both eNOS protein and activity. Endothelial NOS expression was maximal following 2 days of constant VEGF exposure (500 pM) and declined to base-line levels by day 5. The elevated eNOS protein level was sustained over the time course if VEGF was co-incubated with L-N(G)-nitroarginine methyl ester, a competitive eNOS inhibitor. Addition of S-nitroso-N-acetylpenicillamine, a nitric oxide donor, prevented VEGF-induced eNOS up-regulation. These data suggest that nitric oxide participates in a negative feedback mechanism regulating eNOS expression. Various approaches were used to investigate the role of the two high affinity VEGF receptors in eNOS up-regulation. A KDR receptor-selective mutant increased eNOS expression, whereas an Flt-1 receptor-selective mutant did not. Furthermore, VEGF treatment increased eNOS expression in a KDR but not in an Flt-1 receptor-transfected porcine aorta endothelial cell line. SU1498, a selective inhibitor of the KDR receptor tyrosine kinase, blocked eNOS up-regulation, thus providing further evidence that the KDR receptor signals for eNOS up-regulation. Finally, treatment of adrenal cortex endothelial cells with VEGF or phorbol ester resulted in protein kinase C activation and elevated eNOS expression, whereas inhibition of protein kinase C with isoform-specific inhibitors abolished VEGF-induced eNOS up-regulation. Taken together, these data demonstrate that VEGF increases eNOS expression via activation of the KDR receptor tyrosine kinase and a downstream protein kinase C signaling pathway.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell-specific mitogen that promotes angiogenesis, vascular hyperpermeability, and vasodilation by autocrine mechanisms involving nitric oxide (NO) and prostacyclin (PGI(2)) production. These experiments used immunoprecipitation and immunoassay procedures to characterize the signaling pathways by which VEGF induces NO and PGI(2) formation in cultured endothelial cells. The data showed that VEGF stimulates complex formation of the flk-1/kinase-insert domain-containing receptor (KDR) VEGF receptor with c-Src and that Src activation is required for VEGF induction of phospholipase C gamma1 activation and inositol 1,4,5-trisphosphate formation. Reporter cell assays showed that VEGF promotes a approximately 50-fold increase in NO formation, which peaks at 5-20 min. This effect is mediated by a signaling cascade initiated by flk-1/KDR activation of c-Src, leading to phospholipase C gamma1 activation, inositol 1,4,5-trisphosphate formation, release of [Ca(2+)](i) and nitric oxide synthase activation. Immunoassays of VEGF-induced 6-keto prostaglandin F(1alpha) formation as an indicator of PGI(2) production revealed a 3-4-fold increase that peaked at 45-60 min. The PGI(2) signaling pathway follows the NO pathway through release of [Ca(2+)](i), but diverges prior to NOS activation and also requires activation of mitogen-activated protein kinase. These results suggest that NO and PGI(2) function in parallel in mediating the effects of VEGF.  相似文献   

18.
Vascular endothelial growth factor (VEGF)-D binds to VEGF receptors (VEGFR) VEGFR2/KDR and VEGFR3/Flt4, but the signaling mechanisms mediating its biological activities in endothelial cells are poorly understood. Here we investigated the mechanism of action of VEGF-D, and we compared the signaling pathways and biological responses induced by VEGF-D and VEGF-A in endothelial cells. VEGF-D induced KDR and phospholipase C-gamma tyrosine phosphorylation more slowly and less effectively than VEGF-A at early times but had a more sustained effect and was as effective as VEGF-A after 60 min. VEGF-D activated extracellular signal-regulated protein kinases 1 and 2 with similar efficacy but slower kinetics compared with VEGF-A, and this effect was blocked by inhibitors of protein kinase C and mitogen-activated protein kinase kinase. In contrast to VEGF-A, VEGF-D weakly stimulated prostacyclin production and gene expression, had little effect on cell proliferation, and stimulated a smaller and more transient increase in intracellular [Ca(2+)]. VEGF-D induced strong but more transient phosphatidylinositol 3-kinase (PI3K)-mediated Akt activation and increased PI3K-dependent endothelial nitric-oxide synthase phosphorylation and cell survival more weakly. VEGF-D stimulated chemotaxis via a PI3K/Akt- and endothelial nitric-oxide synthase-dependent pathway, enhanced protein kinase C- and PI3K-dependent endothelial tubulogenesis, and stimulated angiogenesis in a mouse sponge implant model less effectively than VEGF-A. VEGF-D-induced signaling and biological effects were blocked by the KDR inhibitor SU5614. The finding that differential KDR activation by VEGF-A and VEGF-D has distinct consequences for endothelial signaling and function has important implications for understanding how multiple ligands for the same VEGF receptors can generate ligand-specific biological responses.  相似文献   

19.
VEGF was first described as vascular permeability factor, a potent inducer of vascular leakage. Genetic evidence indicates that VEGF-stimulated endothelial proliferation in vitro and angiogenesis in vivo depend on heparan sulfate, but a requirement for heparan sulfate in vascular hyperpermeability has not been explored. Here we show that altering endothelial cell heparan sulfate biosynthesis in vivo decreases hyperpermeability induced by both VEGF(165) and VEGF(121). Because VEGF(121) does not bind heparan sulfate, the requirement for heparan sulfate suggested that it interacted with VEGF receptors rather than the ligand. By applying proximity ligation assays to primary brain endothelial cells, we show a direct interaction in situ between heparan sulfate and the VEGF receptor, VEGFR2. Furthermore, the number of heparan sulfate-VEGFR2 complexes increased in response to both VEGF(165) and VEGF(121). Genetic or heparin lyase-mediated alteration of endothelial heparan sulfate attenuated phosphorylation of VEGFR2 in response to VEGF(165) and VEGF(121), suggesting that the functional VEGF receptor complex contains heparan sulfate. Pharmacological blockade of heparan sulfate-protein interactions inhibited hyperpermeability in vivo, suggesting heparan sulfate as a potential target for treating hyperpermeability associated with ischemic disease.  相似文献   

20.
Vascular endothelial growth factor (VEGF) is a newly identified growth and permeability factor with a unique specificity for endothelial cells. Recently the flt-encoded tyrosine kinase was characterized as a receptor for VEGF. A novel tyrosine kinase receptor encoded by the KDR gene was also found to bind VEGF with high affinity when expressed in CMT-3 cells. Screening for flt and KDR expression in a variety of species and tissue-derived endothelial cells demonstrates that flt is predominantly expressed in human placenta and human vascular endothelial cells. Placenta growth factor (PIGF), a growth factor significantly related to VEGF, is coexpressed with flt in placenta and human vascular endothelial cells. KDR is more widely distributed and expressed in all vessel-derived endothelial cells. These data demonstrate that cultured human endothelial cells isolated from different tissues express both VEGF receptors in relative high levels and, additionally, that all investigated nonhuman endothelial cells in culture are also positive for KDR gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号