首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pneumonectomy approximately halves the available pulmonary vascular bed. It is unknown whether the remaining lung has sufficient vascular reserve to cope with increased blood flow under stressful conditions without demonstrating abnormal pulmonary hemodynamics. To investigate this question, unanesthetized ewes with vascular catheters had hemodynamics assessed before and after a left pneumonectomy. Subsequently, on different days, the sheep were exercised on a treadmill under normoxic and hypobaric hypoxic (430 mmHg) (1 mmHg = 133.3 Pa) conditions. Pneumonectomy itself increased mean pulmonary arterial pressure by 4 mmHg. During normoxic or hypoxic exercise, the pneumonectomized sheep demonstrated a pulmonary hemodynamic response similar to normal sheep with two lungs. The pressure-flow relation for the right lung suggested the vascular reserve of the lung was not exceeded during exercise in the pneumonectomized sheep. Eighteen to 70 days after pneumonectomy there was no evidence of right ventricular hypertrophy, but there were small increases in the number of muscularized vessels less than 50 microns diameter and in the amount of muscle in normally muscularized pulmonary arteries. This study demonstrates that pneumonectomy slightly increases mean pulmonary arterial pressure. However, there is sufficient vascular reserve in the remaining lung to permit a normal hemodynamic response to exercise-induced increased blood flow even under hypoxic conditions.  相似文献   

2.
Myogenic tone in the pulmonary vasculature of normoxic adult animals is minimal or nonexistent. Whereas chronic hypoxia (CH) increases basal tone in pulmonary arteries, it is unclear if a portion of this elevated tone is due to development of myogenicity. Since basal arterial RhoA activity and Rho kinase (ROK) expression are augmented by CH, we hypothesized that CH elicits myogenic reactivity in pulmonary arteries through ROK-dependent vascular smooth muscle (VSM) Ca(2+) sensitization. To test this hypothesis, we assessed the contribution of ROK to basal tone and pressure-induced vasoconstriction in endothelium-disrupted pulmonary arteries [50-300 microm inner diameter (ID)] from control and CH [4 wk at 0.5 atmosphere (atm)] rats. Arteries were loaded with fura-2 AM to continuously monitor VSM intracellular Ca(2+) concentration ([Ca(2+)](i)). Basal VSM [Ca(2+)](i) was not different between groups. The ROK inhibitor, HA-1077 (100 nM to 30 microM), caused a concentration-dependent reduction of basal tone in CH arteries but had no effect in control vessels. In contrast, PKC inhibition with GF109203X (1 microM) did not alter basal tone. Furthermore, significant vasoconstriction in response to stepwise increases in intraluminal pressure (5-45 mmHg) was observed at 12, 15, 25, and 35 mmHg in arteries (50-200 microm ID) from CH rats. This myogenic reactivity was abolished by HA-1077 (10 microM) but not by GF109203X. VSM [Ca(2+)](i) was unaltered by HA-1077, GF109203X, or increases in pressure in either group. Myogenicity was not observed in larger vessels (200-300 microm ID). We conclude that CH induces myogenic tone in small pulmonary arteries through ROK-dependent myofilament Ca(2+) sensitization.  相似文献   

3.
At birth, the increase in O(2) tension (pO(2)) is an important cause of the decrease in pulmonary vascular resistance. In adult animals there are impressive interspecies differences in the level of hypoxia required to elicit a pulmonary vasoconstrictor response and in the amplitude of the response. Hypoxic inhibition of some potassium (K(+)) channels in the membrane of pulmonary arterial smooth muscle cells (PASMCs) helps to initiate hypoxic pulmonary vasoconstriction. To determine the effect of the change in pO(2) on fetal rabbit PASMCs and to investigate possible species-dependent differences, we measured the current-voltage relationship and the resting membrane potential, in PASMCs from fetal resistance arteries using the amphotericin-perforated patch-clamp technique under hypoxic and normoxic conditions. Under hypoxic conditions, the K(+) current in PASMCs was small, and could be inhibited by 4-aminopyridine, iberiotoxin and glibenclamide, reflecting contributions by Kv, K(Ca) and K(ATP) channels. The average resting membrane potential was -44.3+/-1.3 mV (n=29) and could be depolarized by 4-AP (5 mM) and ITX (100 nM) but not by glibenclamide (10 microM). Changing from hypoxia, that mimicked fetal life, to normoxia dramatically increased the K(Ca) and consequently hyperpolarized (-9.3+/-1.7 mV; n=8) fetal rabbit PASMCs. Under normoxic conditions K(+) current was reduced by 4-AP with a significant change in resting membrane potential (11.1+/-1.7 mV; n=8). We conclude that resting membrane potential in fetal rabbit PASMCs under both hypoxic and normoxic conditions depends on both Kv and K(Ca) channels, in contrast to fetal lamb or porcine PASMCs. Potential species differences in the K(+) channels that control resting membrane potential must be taken into consideration in the interpretation of studies of neonatal pulmonary vascular reactivity to changes in O(2) tension.  相似文献   

4.
To assess effects of smooth muscle energy state and intracellular pH (pH(i)) on pulmonary arterial tone during hypoxia, we measured ATP, phosphocreatine, P(i), and pH(i) by (31)P-NMR spectroscopy and isometric tension in phenylephrine-contracted rings of porcine proximal intrapulmonary arteries. Hypoxia caused early transient contraction followed by relaxation and late sustained contraction. Energy state and pH(i) decreased during relaxation and recovered toward control values during late contraction. Femoral arterial rings had higher energy state and lower pH(i) under baseline conditions and did not exhibit late contraction or recovery of energy state and pH(i) during hypoxia. In pulmonary arteries, glucose-free conditions abolished late hypoxic contraction and recovery of energy state and pH(i), but endothelial denudation abolished only late hypoxic contraction. NaCN had little effect at 0. 1 and 1.0 mM but caused marked vasorelaxation and decreases in energy state and pH(i) at 10 mM. These results suggest that 1) regulation of tone, energy state, and pH(i) differed markedly in pulmonary and femoral arterial smooth muscle, 2) hypoxic relaxation was mediated by decreased energy state or pH(i) due to hypoxic inhibition of oxidative phosphorylation, 3) recovery of energy state and pH(i) in hypoxic pulmonary arteries was due to accelerated glycolysis mediated by mechanisms intrinsic to smooth muscle, and 4) late hypoxic contraction in pulmonary arteries was mediated by endothelial factors that required hypoxic recovery of energy state and pH(i) for transduction in smooth muscle or extracellular glucose for production and release by endothelium.  相似文献   

5.
Pulmonary veins show greater sensitivity to endothelin (ET)-1-induced vasoconstriction than pulmonary arteries, and remodeling was observed in pulmonary veins under hypoxic conditions. We examined, using an immunohistochemical method, the expression of Big ET-1, ET-converting enzyme (ECE), and ET(A) and ET(B) receptors in rat pulmonary veins under normoxic and hypoxic conditions. In control rats, Big ET-1 and ECE were coexpressed in the intima and media of the pulmonary veins, with an even distribution along the axial pathway. ET(A) and ET(B) receptors were expressed in the pulmonary veins, with a predominant distribution in the proximal segments. The expression of Big ET-1 was more abundant in the pulmonary veins than in the pulmonary arteries. After exposure to hypoxia for 7 or 14 days, the expression of Big ET-1, ECE, and ET receptors increased in small pulmonary veins. Increases in the medial thickness, wall thickness, and immunoreactivity for alpha-smooth muscle actin were also observed in the small pulmonary veins under hypoxic conditions. The upregulation of ET-1 and ET receptors in the small pulmonary veins is associated with vascular remodeling, which may lead to the development of hypoxic pulmonary hypertension.  相似文献   

6.
Blunted agonist-induced vasoconstriction after chronic hypoxia is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and decreased vessel-wall Ca(2+) concentration ([Ca(2+)]). We hypothesized that myogenic vasoconstriction and pressure-induced Ca(2+) influx would also be attenuated in vessels from chronically hypoxic (CH) rats. Mesenteric resistance arteries isolated from CH [barometric pressure (BP), 380 Torr for 48 h] or normoxic control (BP, 630 Torr) rats were cannulated and pressurized. VSM cell resting membrane potential was recorded at intraluminal pressures of 40-120 Torr under normoxic conditions. VSM cells in vessels from CH rats were hyperpolarized compared with control rats at all pressures. Inner diameter was maintained for vessels from control rats, whereas vessels from CH rats developed less tone as pressure was increased. Pressure-induced increases in vessel-wall [Ca(2+)] were also attenuated for arteries from CH rats. Endothelium removal restored myogenic constriction to vessels from CH rats and normalized VSM cell resting membrane potential and pressure-induced Ca(2+) responses to control levels. Myogenic constriction and pressure-induced vessel-wall [Ca(2+)] increases remained blunted in the presence of nitric oxide (NO) synthase inhibition for arteries from CH rats. We conclude that blunted myogenic reactivity after chronic hypoxia results from a non-NO, endothelium-dependent VSM cell hyperpolarizing influence.  相似文献   

7.
本研究观察了低氧对大鼠肺组织和血管内皮一氧化氮合酶(NOS)活性及内皮衍生一氧化氮(EDNO)依赖性舒张反应的影响,以及NOS抑制剂(L-NAME)对常氧和低氧大鼠肺组织和血管内皮NOS活性及颈、肺动脉血压(CAPs、mPAP)的作用。结果表明常氧大鼠肺泡内无肌性血管内皮未见NOS活性,其肺血管床对EDNO依赖性舒血管物质BK没有反应,注射L-NAME后大鼠mPAP略有降低,CAPs有所升高。低氧大鼠肺泡内无肌性血管内皮显示NOS活性,对BK的EDNO依赖性舒张反应呈剂量依赖性增大,注射L-NAME使低氧大鼠mPAP显著降低(P<0.01),CAPs显著升高(P<0.05)。提示肺血管EDNO及其合酶在维持正常成年大鼠肺循环低压低阻中的生理作用值得进一步探讨;低氧引起肺血管内皮ecNOS活性增加和EDNO生成增多可能起到限制肺动脉压过度升高的调制作用,也可能对肺血管内皮产生毒性作用,反而促进肺动脉高压的发生和发展。  相似文献   

8.
In addition to adrenergic innervation, cerebral arteries also contain neuronal nitric oxide synthase (nNOS)-expressing nerves that augment adrenergic nerve function. We examined the impact of development and chronic high-altitude hypoxia (3,820 m) on nNOS nerve function in near-term fetal and adult sheep middle cerebral arteries (MCA). Electrical stimulation-evoked release of norepinephrine (NE) was measured with HPLC and electrochemical detection, whereas nitric oxide (NO) release was measured by chemiluminescence. An inhibitor of NO synthase, N(omega)-nitro-l-arginine methyl ester (l-NAME), significantly inhibited stimulation-evoked NE release in MCA from normoxic fetal and adult sheep with no effect in MCA from hypoxic animals. Addition of the NO donor S-nitroso-N-acetyl-dl-penicillamine fully reversed the effect of l-NAME in MCA from normoxic animals with no effect in MCA from hypoxic animals. Electrical stimulation caused a significant increase in NO release in MCA from normoxic animals, an effect that was blocked by the neurotoxin tetrodotoxin, whereas there was no increase in NO release in MCA from hypoxic animals. Relative abundance of nNOS as measured by Western blot analysis was similar in normoxic fetal and adult MCA. However, after hypoxic acclimitization, nNOS levels dramatically declined in both fetal and adult MCA. These data suggest that the function of nNOS nerves declines during chronic high-altitude hypoxia, a functional change that may be related to a decline in nNOS protein levels.  相似文献   

9.

Rationale

There is evidence that impairments in nitric oxide (NO) signaling contribute to chronic hypoxia-induced pulmonary hypertension. The L-arginine-NO precursor, L-citrulline, has been shown to ameliorate pulmonary hypertension. Sodium-coupled neutral amino acid transporters (SNATs) are involved in the transport of L-citrulline into pulmonary arterial endothelial cells (PAECs). The functional link between the SNATs, L-citrulline, and NO signaling has not yet been explored.

Objective

We tested the hypothesis that changes in SNAT1 expression and transport function regulate NO production by modulating eNOS coupling in newborn piglet PAECs.

Methods and Results

A silencing RNA (siRNA) technique was used to assess the contribution of SNAT1 to NO production and eNOS coupling (eNOS dimer-to-monomer ratios) in PAECs from newborn piglets cultured under normoxic and hypoxic conditions in the presence and absence of L-citrulline. SNAT1 siRNA reduced basal NO production in normoxic PAECs and prevented L-citrulline-induced elevations in NO production in both normoxic and hypoxic PAECs. SNAT1 siRNA reduced basal eNOS dimer-to-monomer ratios in normoxic PAECs and prevented L-citrulline-induced increases in eNOS dimer-to-monomer ratios in hypoxic PAECs.

Conclusions

SNAT1 mediated L-citrulline transport modulates eNOS coupling and thus regulates NO production in hypoxic PAECs from newborn piglets. Strategies that increase SNAT1-mediated transport and supply of L-citrulline may serve as novel therapeutic approaches to enhance NO production in patients with pulmonary vascular disease.  相似文献   

10.
Cyclic GMP-dependent protein kinase (PKG) plays an important role in regulating pulmonary vasomotor tone in the perinatal period. In this study, we tested the hypothesis that a change in oxygen tension affects PKG-mediated pulmonary vasodilation. Isolated intrapulmonary arteries and veins of near-term fetal lambs were first incubated for 4 h under hypoxic and normoxic conditions (Po2 of 30 and 140 mmHg, respectively) and then contracted with endothelin-1. 8-Bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), a cell membrane-permeable analog of cGMP, induced a greater relaxation in vessels incubated in normoxia than in hypoxia. beta-Phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp isomer (Rp-8-Br-PET-cGMPS), a selective inhibitor of PKG, attenuated relaxation induced by 8-BrcGMP (10-4 and 3 x 10-4 M). In the presence of Rp-8-Br-PET-cGMPS, the differential responses to 8-BrcGMP between hypoxia and normoxia treatment were abolished in veins but not in arteries. cGMP-stimulated PKG activity was present in arteries but not in veins after 4 h of hypoxia. Both vessel types showed significant increase in cGMP-stimulated PKG activity after 4 h of normoxia. PKG protein (Western blot analysis) and PKG mRNA levels (quantitative RT-PCR) were greater in veins but not in arteries after 4-h exposure to normoxia vs. hypoxia. These results demonstrate that oxygen augments cGMP-mediated vasodilation of fetal pulmonary arteries and veins. Furthermore, the effect of oxygen on response of the veins to cGMP is due to an increase in the activity, protein level, and mRNA of PKG.  相似文献   

11.
Flow-induced vasodilation in the ferret lung   总被引:10,自引:0,他引:10  
Chammas, Joseph H., David. A. Rickaby, Margarita Guarin,John H. Linehan, Christopher C. Hanger, and Christopher A. Dawson. Flow-induced vasodilation in the ferret lung. J. Appl. Physiol. 83(2): 495-502, 1997.To examinethe possibility that shear stress may be a pulmonary vasodilatorstimulus, we studied the effect of changing blood flow on the diametersof small pulmonary arteries in isolated perfused ferret lung lobes. Thearteries studied were in the ~0.3- to 1.3-mm-diameter range, and thediameters were measured by using microfocal X-ray imaging. Thediameters were measured at two flow rates, 10 and 40 ml/min, with theintravascular pressure in the measured vessels the same at the two flowrates as the result of venous pressure adjustment. The response to a change in flow was studied under both normoxic and hypoxic conditions. Hypoxia was used to elevate pulmonary arterial tone to increase thelikelihood of detecting a vasodilator response. Under normoxic conditions, changing flow had little effect on the arterial diameters, but under hypoxic conditions the arteries were consistently larger atthe higher flow than at the lower flow, even though the distending pressure was the same at the two flow rates. The results are consistent with the hypothesis that shear stress is a pulmonary vasodilator stimulus.

  相似文献   

12.
Wang PY  Liu J  Yu ZH  Xu SM  Wang JY  Sun BY 《生理学报》1998,50(2):199-205
血管内皮细胞和血管平滑细胞在结构和功能上关系密切,两者的相互在与血管舒缩笔血和壁结构。本文观察了培养的小牛肺动脉内皮细胞(PAECs)和肺动平滑肌细胞(PASMCS)缺氧时在细胞增殖方面的相互影响。PASMCS常氧条件培养基(CM)可使PAECS的^3H-TdR掺入降低约58%,缺氧CM对PAECS的^3H-TdR掺入无明显的抑制作用;PAECS的常氧CM使PASMS的^3H-TdR掺入升高约60  相似文献   

13.
Hypoxia in the fetus and/or newborn is associated with an increased risk of pulmonary hypertension. The present study tested the hypothesis that long-term high-altitude hypoxemia differentially regulates contractility of fetal pulmonary arteries (PA) and veins (PV) mediated by differences in endothelial NO synthase (eNOS). PA and PV were isolated from near-term fetuses of pregnant ewes maintained at sea level (300 m) or high altitude of 3,801 m for 110 days (arterial Po(2) of 60 Torr). Hypoxia had no effect on the medial wall thickness of pulmonary vessels and did not alter KCl-induced contractions. In PA, hypoxia significantly increased norepinephrine (NE)-induced contractions, which were not affected by eNOS inhibitor N(G)-nitro-l-arginine (l-NNA). In PV, hypoxia had no effect on NE-induced contractions in the absence of l-NNA. l-NNA significantly increased NE-induced contractions in both control and hypoxic PV. In the presence of l-NNA, NE-induced contractions of PV were significantly decreased in hypoxic lambs compared with normoxic animals. Acetylcholine caused relaxations of PV but not PA, and hypoxia significantly decreased both pD(2) and the maximal response of acetylcholine-induced relaxation in PV. Additionally, hypoxia significantly decreased the maximal response of sodium nitroprusside-induced relaxations of both PA and PV. eNOS was detected in the endothelium of both PA and PV, and eNOS protein levels were significantly higher in PV than in PA in normoxic lambs. Hypoxia had no significant effect on eNOS levels in either PA or PV. The results demonstrate heterogeneity of fetal pulmonary arteries and veins in response to long-term high-altitude hypoxia and suggest a likely common mechanism downstream of NO in fetal pulmonary vessel response to chronic hypoxia in utero.  相似文献   

14.
PPHN, caused by perinatal hypoxia or inflammation, is characterized by an increased thromboxane-prostacyclin ratio and pulmonary vasoconstriction. We examined effects of hypoxia on myocyte thromboxane responsiveness. Myocytes from 3rd-6th generation pulmonary arteries of newborn piglets were grown to confluence and synchronized in contractile phenotype by serum deprivation. On the final 3 days of culture, myocytes were exposed to 10% O2 for 3 days; control myocytes from normoxic piglets were cultured in 21% O2. PPHN was induced in newborn piglets by 3-day hypoxic exposure (Fi(O2) 0.10); pulmonary arterial myocytes from these animals were maintained in normoxia. Ca2+ mobilization to thromboxane mimetic U-46619 and ATP was quantified using fura-2 AM. Three-day hypoxic exposure in vitro results in increased basal [Ca2+]i, faster and heightened peak Ca2+ response, and decreased U-46619 EC50. These functional changes persist in myocytes exposed to hypoxia in vivo but cultured in 21% O2. Blockade of Ca2+ entry and store refilling do not alter peak U-46619 Ca2+ responses in hypoxic or normoxic myocytes. Blockade of ryanodine-sensitive or IP3-gated intracellular Ca2+ channels inhibits hypoxic augmentation of peak U-46619 response. Ca2+ response to ryanodine alone is undetectable; ATP-induced Ca2+ mobilization is unaltered by hypoxia, suggesting no independent increase in ryanodine-sensitive or IP3-linked intracellular Ca2+ pool mobilization. We conclude hypoxia has a priming effect on neonatal pulmonary arterial myocytes, resulting in increased resting Ca2+, thromboxane hypersensitivity, and hyperreactivity. We postulate that hypoxia increases agonist-induced TP-R-linked IP3 pathway activation. Myocyte thromboxane hyperresponsiveness persists in culture after removal from the initiating hypoxic stimulus, suggesting altered gene expression.  相似文献   

15.
Nitric oxide (NO) reacts with superoxide anion to form the peroxynitrite anion (ONOO-), a molecule with pulmonary vasodilator properties in the adult rat. The purpose of this study was to compare the effects of ONOO- on intrapulmonary arteries from the newborn (days 4-7), juvenile (day 14), and adult rat. Following thromboxane A2 (TXA2) analogue (U46619) prestimulation, newborn vessels were more sensitive to ONOO- -induced muscle contraction, compared to both the juvenile and the adult vessels. Peroxynitrite-induced contraction in newborn vessels was abrogated by ibuprofen, an endothelin B-receptor blocker (A-192621), or a rho-kinase-specific inhibitor (Y27632) (all p < 0.01). Following KCl stimulation and TXA2 receptor blockade, ONOO- induced NO-dependent muscle relaxation in newborn vessels via stimulation of the endothelial and inducible nitric oxide synthases. However, in the presence of ONOO-, the pulmonary artery relaxation response to endothelium-dependent stimulation was significantly reduced (p < 0.01). Finally, newborn but not adult pulmonary arteries exposed to ONOO- showed a 10-fold increase in 8-isoprostane production, a possible mediator of ONOO- -induced contraction. We conclude that exposure to ONOO- results in a unique response in newborn intrapulmonary arteries characterized by increased 8-isoprostane generation, which we believe is responsible for its vasoconstrictor effect. This unique response potentially renders the newborn more susceptible to ONOO- -induced pulmonary hypertension than older animals.  相似文献   

16.
Exposure to chronic hypoxia results in hypoxic pulmonary hypertension (HPH). In rats HPH develops during the first two weeks of exposure to hypoxia, then it stabilizes and does not increase in severity. We hypothesize that free radical injury to pulmonary vascular wall is an important mechanism in the early days of the hypoxic exposure. Thus antioxidant treatment just before and at the beginning of hypoxia should be more effective in reducing HPH than antioxidant therapy of developed pulmonary hypertension. We studied adult male rats exposed for 4 weeks to isobaric hypoxia (F(iO2) = 0.1) and treated with the antioxidant, N-acetylcysteine (NAC, 20 g/l in drinking water). NAC was given "early" (7 days before and the first 7 days of hypoxia) or "late" (last two weeks of hypoxic exposure). These experimental groups were compared with normoxic controls and untreated hypoxic rats (3-4 weeks hypoxia). All animals kept in hypoxia had significantly higher mean pulmonary arterial blood pressure (PAP) than normoxic animals. PAP was significantly lower in hypoxic animals with early (27.1 +/- 0.9 mmHg) than late NAC treatment (30.5 +/- 1.0 mmHg, P < 0.05; hypoxic without NAC 32.6 +/- 1.2 mmHg, normoxic controls 14.9 +/- 0.7 mmHg). Early but not late NAC treatment inhibited hypoxia-induced increase in right ventricle weight and muscularization of distal pulmonary arteries assessed by quantitative histology. We conclude that release of free oxygen radicals in early phases of exposure to hypoxia induces injury to pulmonary vessels that contributes to their structural remodeling and development of HPH.  相似文献   

17.
The factors accounting for the maintenance of a low pulmonary vascular resistance postnatally are not completely understood. The aim of this study was to test the hypothesis that bronchial epithelium produces a factor capable of relaxing adjacent pulmonary arterial smooth muscle. We studied fourth-generation intralobar pulmonary arteries and bronchi of 4- to 8-day-old rats. Arteries were mounted on a wire myograph, alone or with the adjacent bronchus. The presence of the attached bronchus significantly reduced pulmonary artery force generation induced by the thromboxane analog (U-46619) or KCl whether the endothelium was present or absent (P < 0.01). The converse was not true in that bronchial force generation was not affected when studied with the adjacent pulmonary artery. Mechanical removal of the bronchial epithelium or addition of the nitric oxide (NO) synthase (NOS) nonspecific (N(G)-monomethyl-l-arginine) or the specific neuronal NOS (7-nitroindazole) inhibitors increased arterial force generation to levels comparable to the isolated artery preparation. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, significantly decreased (P < 0.01) NO release of pulmonary arteries only when the adjacent bronchus was present. We conclude that bronchial epithelium in the newborn rat produces a factor capable of lowering pulmonary vascular muscle tone. This relaxant effect can be suppressed by NOS and phosphatidylinositol 3-kinase kinase inhibition, suggesting an action via NOS phosphorylation and NO release. We speculate that such a mechanism may be operative in vivo and plays an important role in control of pulmonary vascular resistance in the early postnatal period.  相似文献   

18.
Persistent pulmonary hypertension of newborn (PPHN) is associated with decreased nitric oxide (NO) release and impaired pulmonary vasodilation. We investigated the hypothesis that decreased association of heat shock protein 90 (HSP90) with endothelial NO synthase (eNOS) impairs NO release and vasodilation in PPHN. The responses to the NOS agonist ATP were investigated in fetal lambs with PPHN induced by prenatal ligation of ductus arteriosus, and in sham ligation controls. ATP caused dose-dependent vasodilation in control pulmonary resistance arteries, and this response was attenuated in PPHN vessels. The response of control pulmonary arteries to ATP was attenuated by NG-nitro-l-arginine methyl ester (l-NAME), a NOS antagonist, and geldanamycin, an inhibitor of HSP90-eNOS interaction. The attenuated response to ATP observed in PPHN was improved by pretreatment of vessels with l-NAME or 4,5-dihydroxy-1,3-benzene-disulfonate, a superoxide scavenger. Pulmonary arteries from PPHN lambs had decreased basal levels of HSP90 in association with eNOS. Association of HSP90 with eNOS and NO release increased in response to ATP in control pulmonary artery endothelial cells, but not in cells from PPHN lambs. Decreased HSP90-eNOS interactions may contribute to the impaired NO release and vasodilation observed in the ductal ligation model of PPHN.  相似文献   

19.
The most dramatic changes in pulmonary circulation occur at the time of birth. We hypothesized that some of the effects of perinatal hypoxia on pulmonary vessels are permanent. We studied the consequences of perinatal exposure to hypoxia (12 % O2 one week before and one week after birth) in isolated lungs of adult male rats (approximately 12 weeks old) perfused with homologous blood. Perfusion pressure-flow relationship was tilted towards lower pressures in the perinatally hypoxic as compared to the control, perinatally normoxic rats. A non-linear, distensible vessel model analysis revealed that this was due to increased vascular distensibility in perinatally hypoxic rats (4.1 +/- 0.6 %/mm Hg vs. 2.3 +/- 0.4 %/mm Hg in controls, P = 0.03). Vascular occlusion techniques showed that lungs of the perinatally hypoxic rats had lower pressures at both the pre-capillary and post-capillary level. To assess its role, basal vascular tone was eliminated by a high dose of sodium nitroprusside (20 microM). This reduced perfusion pressures only in the lungs of rats born in hypoxia, indicating that perinatal hypoxia leads to a permanent increase in the basal tone of the pulmonary vessels. Pulmonary vasoconstrictor reactivity to angiotensin II (0.1-0.5 microg) was reduced in rats with the history of perinatal-hypoxia. These data show that perinatal hypoxia has permanent effects on the pulmonary circulation that may be beneficial and perhaps serve to offset the previously described adverse consequences.  相似文献   

20.
Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, which exists in both pulmonary arteries and pulmonary veins. Pulmonary vascular remodeling stems from excessive proliferation of pulmonary vascular myocytes. Platelet-derived growth factor-BB (PDGF-BB) is a vital vascular regulator whose level increases in PH human lungs. Although the mechanisms by which pulmonary arterial smooth muscle cells respond to PDGF-BB have been studied extensively, the effects of PDGF-BB on pulmonary venous smooth muscle cells (PVSMCs) remain unknown. We herein examined the involvement of calcium sensing receptor (CaSR) in PDGF-BB-induced PVSMCs proliferation under hypoxic conditions. In PVSMCs isolated from rat intrapulmonary veins, PDGF-BB increased the cell number and DNA synthesis under normoxic and hypoxic conditions, which was accompanied by upregulated CaSR expression. The influences of PDGF-BB on proliferation and CaSR expression in hypoxic PVSMCs were greater than that in normoxic PVSMCs. In hypoxic PVSMCs superfused with Ca2+-free solution, restoration of extracellular Ca2+ induced an increase of [Ca2+]i, which was significantly smaller than that in PDGF-BB-treated hypoxic PVSMCs. The positive CaSR modulator spermine enhanced, whereas the negative CaSR modulator NPS2143 attenuated, the extracellular Ca2+-induced [Ca2+]i increase in PDGF-BB-treated hypoxic PVSMCs. Furthermore, the spermine enhanced, whereas the NPS2143 inhibited, PDGF-BB-induced proliferation in hypoxic PVSMCs. Silencing CaSR with siRNA attenuated the extracellular Ca2+-induced [Ca2+]i increase in PDGF-BB-treated hypoxic PVSMCs and inhibited PDGF-BB-induced proliferation in hypoxic PVSMCs. In conclusion, these results demonstrated that CaSR mediating PDGF-BB-induced excessive PVSMCs proliferation is an important mechanism involved in the initiation and progression of PVSMCs proliferation under hypoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号