首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is presently an intense discussion if electromagnetic field (EMF) exposure has consequences for human health. This include exposure to structures and appliances that emit in the extremely low frequency (ELF) range of the electromagnetic spectrum, as well as emission coming from communication devices using the radiofrequency part of the spectrum. Biological effects of such exposures have been noted frequently, although the implication for specific health effects is not that clear. The basic interaction mechanism(s) between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. In addition, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. Although 50/60 Hz EMF do not directly lead to genotoxic effects, it is possible that certain cellular processes altered by exposure to EMF indirectly affect the structure of DNA causing strand breaks and other chromosomal aberrations. The aim of this article is to present a hypothesis of a possible initial cellular event affected by exposure to ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation by means of increasing levels of free radicals. Such a general activation is compatible with the diverse nature of observed effects. Free radicals are intermediates in natural processes like mitochondrial metabolism and are also a key feature of phagocytosis. Free radical release is inducible by ionizing radiation or phorbol ester treatment, both leading to genomic instability. EMF might be a stimulus to induce an "activated state" of the cell such as phagocytosis, which then enhances the release of free radicals, in turn leading to genotoxic events. We envisage that EMF exposure can cause both acute and chronic effects that are mediated by increased free radical levels: (1) Direct activation of, for example macrophages (or other cells) by short-term exposure to EMF leads to phagocytosis (or other cell specific responses) and consequently, free radical production. This pathway may be utilized to positively influence certain aspects of the immune response, and could be useful for specific therapeutic applications. (2) EMF-induced macrophage (cell) activation includes direct stimulation of free radical production. (3) An increase in the lifetime of free radicals by EMF leads to persistently elevated free radical concentrations. In general, reactions in which radicals are involved become more frequent, increasing the possibility of DNA damage. (4) Long-term EMF exposure leads to a chronically increased level of free radicals, subsequently causing an inhibition of the effects of the pineal gland hormone melatonin. Taken together, these EMF induced reactions could lead to a higher incidence of DNA damage and therefore, to an increased risk of tumour development. While the effects on melatonin and the extension of the lifetime of radicals can explain the link between EMF exposure and the incidence of for example leukaemia, the two additional mechanisms described here specifically for mouse macrophages, can explain the possible correlation between immune cell system stimulation and EMF exposure.  相似文献   

2.
It has been recently established that low-frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high-frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low- and high-frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high-frequency EMFs could affect in vitro cell survival, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high-frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro-apoptotic and pro-survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2-12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53-dependent and -independent apoptotic pathways while longer continuous exposure (24-48 h) determined silencing of pro-apoptotic signals and activation of genes involved in both intracellular (Bcl-2) and extracellular (Ras and Akt1) pro-survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self-defense response triggered by DNA damage, could confer to the survivor CCRF-CEM cells a further advantage to survive and proliferate.  相似文献   

3.
Exposure to power frequency electric and magnetic fields (EMF) is ubiquitous, and a body of epidemiologic studies has produced evidence suggestive of a possible link between EMF exposure and cancer of several types. This paper provides a perspective that holds key findings in the EMF literature against the background of important models and established principles in cancer biology. It is intended primarily for scientists whose expertise lies outside of cancer biology and animal bioassays. Current thinking holds that carcinogenesis is a multistep process that requires at least two genotoxic events in its critical path but that is facilitated by nongenotoxic proliferative effects on target cells. EMF, which itself is not believed to be genotoxic, could influence carcinogenesis if it exerted either direct or indirect effects on target cell turnover. Such effects could operate through receptor-mediated or nonreceptor-mediated pathways. However, effects relevant to carcinogenesis have not been confirmed, and a mode of action for EMF has not been determined. Chronic bioassays in rodents are in progress to examine the potential carcinogenicity of EMFs. EMF research has the opportunity to capitalize on the recent major advances in our understanding of carcinogenic processes. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The original article to which this Erratum was published in J. Cell. Physiol. 198:324–332, 2004 It has been recently established that low‐frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high‐frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low‐ and high‐frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high‐frequency EMFs could affect in vitro cell survival, we cultured acute T‐lymphoblastoid leukemia cells (CCRF‐CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high‐frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro‐apoptotic and pro‐survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2–12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53‐dependent and ‐independent apoptotic pathways while longer continuous exposure (24–48 h) determined silencing of pro‐apoptotic signals and activation of genes involved in both intracellular (Bcl‐2) and extracellular (Ras and Akt1) pro‐survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self‐defense response triggered by DNA damage, could confer to the survivor CCRF‐CEM cells a further advantage to survive and proliferate. J. Cell. Physiol. 198: 324–332, 2004. © 2003 Wiley‐Liss, Inc.  相似文献   

5.
The debate as to whether low-level electromagnetic fields can affect biological systems and in the long term cause health effects has been going on for a long time. Yet the interaction of weak electromagnetic fields (EMF) with living cells, undoubtedly a most important phenomenon, is still not well understood. The exact mechanisms by which the effects are produced have not been identified. Furthermore, it is not possible to clearly define which aspects of an EMF exposure that constitute the “dose.” One of the groups that contributed to solving this problem is the Bioelectromagnetics group at Catholic University of America (CUA), Washington, D.C. Their work has been devoted to investigating the physical parameters that are needed to obtain an effect of EMF exposure on biological systems, and also how to inhibit the effect. This is a review of their work on bioeffects caused by low-level EMF, their dependence on coherence time, constancy, spatial averaging, and also how the effects can be modified by an applied ELF noise magnetic field. The group has been using early chick embryos, and L929 and Daudi cells as their main experimental systems. The review also covers the work of other groups on low-level effects and the inhibition of the effects with an applied noise field. The group at CUA has shown that biological effects can be found after exposure to low-level ELF and RF electromagnetic fields, and when effects are observed, applying an ELF magnetic noise field inhibits the effects. Also, other research groups have tried to replicate the studies from the CUA group, or to apply EMF noise to suppress EMF-induced effects. Replications of the CUA effects have not always been successful. However, in all cases where the noise field has been applied to prevent an observed effect, it has been successful in eliminating the effect.  相似文献   

6.
7.
8.
Exposure to repetitive low‐frequency electromagnetic field (LF‐EMF) shows promise as a non‐invasive approach to treat various sensory and neurological disorders. Despite considerable progress in the development of modern stimulation devices, there is a limited understanding of the mechanisms underlying their biological effects and potential targets at the cellular level. A significant impact of electromagnetic field on voltage‐gated calcium channels and downstream signalling pathways has been convincingly demonstrated in many distinct cell types. However, evidence for clear effects on primary sensory neurons that particularly may be responsible for the analgesic actions of LF‐EMF is still lacking. Here, we used F11 cells derived from dorsal root ganglia neurons as an in vitro model of peripheral sensory neurons and three different protocols of high‐induction magnetic stimulation to determine the effects on chemical responsiveness and spontaneous activity. We show that short‐term (<180 sec.) exposure of F11 cells to LF‐EMF reduces calcium transients in response to bradykinin, a potent pain‐producing inflammatory agent formed at sites of injury. Moreover, we characterize an immediate and reversible potentiating effect of LF‐EMF on neuronal spontaneous activity. Our results provide new evidence that electromagnetic field may directly modulate the activity of sensory neurons and highlight the potential of sensory neuron‐derived cell line as a tool for studying the underlying mechanisms at the cellular and molecular level.  相似文献   

9.
In recent years, a number of in vitro studies have reported on the possible athermal effects of electromagnetic exposure on biological tissue. Typically, this kind of study is performed on monolayers of primary cells or cell lines. However, two‐dimensional cell layer systems lack physiological relevance since cells in vivo are organized in a three‐dimensional (3D) architecture. In monolayer studies, cell‐cell and cell‐ECM interactions obviously differ from live tissue and scale‐ups of experimental results to in vivo systems should be considered carefully. To overcome this problem, we used a scaffold‐free 3D cell culture system, suitable for the exploration of electrophysiological effects due to electromagnetic fields (EMF) at 900 MHz. Dissociated cardiac myocytes were reaggregated into cellular spheres by constant rotation, and non‐invasive extracellular recordings of these so‐called spheroids were performed with microelectrode arrays (MEA). In this study, 3D cell culture systems were exposed to pulsed EMFs in a stripline setup. We found that inhomogeneities in the EMF due to electrodes and conducting lines of the MEA chip had only a minor influence on the field distribution in the spheroid if the exposure parameters were chosen carefully. Bioelectromagnetics 32:351–359, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
MAP kinase activation in cells exposed to a 60 Hz electromagnetic field   总被引:3,自引:0,他引:3  
This research provides evidence that mitogen-activated protein kinase or extracellular signal-regulated kinase (MAPK/ERK) is activated in HL-60 human leukemia cells, MCF-7 human breast cancer cells, and rat fibroblast 3Y1 cells exposed to a 60 Hertz (Hz), 1 Gauss (G) electromagnetic field (EMF). The effects of EMF exposure were compared to those observed using 12-O-tetradecanoylphorbal-13-acetate (TPA) treatment. The level of MAPK activation in cells exposed to EMF was approximately equivalent to that in cells treated with 0.1-0.5 ng/ml of TPA. A role for protein kinase C (PKC) in the process leading to MAPK activation in EMF exposed cells is also suggested by the results. MAPK activation is negated by an inhibitor to PKCalpha, but not PKCdelta inhibitors, in cells subjected to EMF exposure or TPA treatment. Thus, similarities between the effects of EMF exposure and TPA treatment are supported by this investigation. This provides a possible method for revealing other participants in EMF-cell interaction, since the TPA induction pathway is well documented.  相似文献   

11.
We report new data regarding the molecular mechanisms of GSM‐induced increase of cell endocytosis rate. Even though endocytosis represents an important physical and biological event for cell physiology, studies on modulated electromagnetic fields (EMF) effects on this process are scarce. In a previous article, we showed that fluid phase endocytosis rate increases when cultured cells are exposed to 900 MHz EMF similar to mobile phones' modulated GSM signals (217 Hz repetition frequency, 576 µs pulse width) and to electric pulses similar to the GSM electrical component. Trying to distinguish the mechanisms sustaining this endocytosis stimulation, we exposed murine melanoma cells to Lucifer Yellow (LY) or to GSM–EMF/electric pulses in the presence of drugs inhibiting the clathrin‐ or the caveolin‐dependent endocytosis. Experiments were performed at a specific absorption rate (SAR) of 3.2 W/kg in a wire patch cell under homogeneously distributed EMF field and controlled temperature (in the range of 28.5–29.5 °C). Thus, the observed increase in LY uptake was not a thermal effect. Chlorpromazine and ethanol, but not Filipin, inhibited this increase. Therefore, the clathrin‐dependent endocytosis is stimulated by the GSM–EMF, suggesting that the cellular mechanism affected by the modulated EMF involves vesicles that detach from the cell membrane, mainly clathrin‐coated vesicles. Bioelectromagnetics 30:222–230, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Since pioneering investigations published in the beginning of 1970th, various biological responses to non-thermal (NT) microwaves (MW), including adverse health effects, have been described by many research groups all over the world. There is strong evidence that the NT MW biological effects depend on several physical parameters and biological variables, which must be controlled in replication studies. Apart from the fundamental importance, the development of comprehensive mechanisms for the NT MW effects is socially important. The effects of MW of mobile communications are of major concern because of the increased exposure in many countries. It has been shown that adverse effects of NT MW from GSM/UMTS mobile phones on human lymphocytes from healthy and hypersensitive to EMF persons depend on carrier frequency and modulation. Further investigations with human primary cells, animals and volunteers are needed to elucidate possible adverse effects of MW signals that are used in wireless communication. Identification of those types and frequency channels/bands for mobile communication, which do not affect human cells, is urgently needed as the high priority task for the development of safe mobile communication. Numerous data on the NT MW effects clearly indicate that the SAR-concept alone cannot underlie the safety guidelines for chronic exposures to MW from mobile communication and other approaches are needed. However, there is not enough research information to set exposure MW standards. Various genetic and epigenetic effects of signals used in mobile communication should be studied. It has been shown that NT MW affect cells of various types including stem cells and reproductive organs. Stem cells represent especially important cellular model because recent data suggest that different cancer types, including leukemia, have a fundamentally common basis that is grounded on epigenetic changes in stem cells.  相似文献   

13.
The effects of low frequency electromagnetic fields (LF EMF) on human health are the subject of on-going research and serious public concern. These fields potentially elicit small effects that have been proposed to have consequences, either positive or negative, for biological systems. To reveal potentially weak but biologically relevant effects, we chose to extensively examine exposure of immune cells to two different signals, namely a complex multiple waveform field, and a 50 Hz sine wave. These immune cells are highly responsive and, in vivo, modulation of cytokine expression responses can result in systemic health effects. Using time course experiments, we determined kinetics of cytokine and other inflammation-related genes in a human monocytic leukemia cell line, THP-1, and primary monocytes and macrophages. Moreover, cytokine protein levels in THP-1 monocytes were determined. Exposure to either of the two signals did not result in a significant effect on gene and protein expression in the studied immune cells. Also, additional experiments using non-immune cells showed no effects of the signals on cytokine gene expression. We therefore conclude that these LF EMF exposure conditions are not expected to significantly modulate innate immune signaling.  相似文献   

14.
Literature on cancer-related biological effects of extremely low frequency (ELF) magnetic fields (MF) is discussed in the light of the current understanding of carcinogenesis as a multistep process of accumulating mutations. Different animal models and study designs have been used to address possible cocarcinogenic effects of MFs. Based on a comparison of the results, we propose a hypothesis that MF exposure may potentiate the effects of known carcinogens only when both exposures are chronic. We also discuss possible mechanisms of MF effects on carcinogenesis and the adequacy of the classical two-step initiation/promotion animal experiments for simulating human exposure to the complex mixture of environmental carcinogens. We conclude that experiments designed according to the two-step concept may not be sufficient for studying the possible role of MF in carcinogenesis. Possible further animal studies are more likely to be productive if they include models that combine chronic exposure to MFs with long-term exposures to known carcinogens.  相似文献   

15.
胞外囊泡(EVs)是细胞旁分泌产生的一种亚细胞成分,实质上是一组纳米级颗粒。它是双层膜结合型囊泡,内含蛋白质、核酸等活性成分。EVs在细胞间通过转移携带的信号分子而获得重要的地位。目前关于EVs在体外和体内的研究中对T细胞的调控能力引起了人们广泛的兴趣。在大多数研究中干细胞被报道能够抑制T细胞的增殖、活化和分化,在极少数研究中也发现干细胞具有增强T细胞免疫反应的作用。事实上所有的细胞类型均能释放EVs,包括干/祖/前体细胞。EVs被认为是细胞间交流的一种新机制,具有与干/祖细胞等亲代细胞相似的免疫调控作用。本综述是概述干/祖细胞来源的EVs对T细胞调控作用及可能的机制。  相似文献   

16.
17.
18.
Cell culture and in vitro models are the basis for much biological research, especially in human immunology. Ex vivo studies of T cell physiology employ conditions attempting to mimic the in vivo situation as closely as possible. Despite improvements in controlling the cellular milieu in vitro, most of what is known about T cell behavior in vitro is derived from experiments on T cells exposed to much higher oxygen levels than are normal in vivo. In this study, we report a reduced proliferative response and increased apoptosis susceptibility after T cell activation at 2% oxygen compared to in air. To explain this observation, we tested the hypothesis of an impaired efficacy of intracellular protective mechanisms including antioxidant levels, oxidized protein repair (methionine sulfoxide reductases), and degradation (proteasome) activities. Indeed, after activation, there was a significant accumulation of intracellular oxidized proteins at more physiological oxygen levels concomitant with a reduced GSH:GSSG ratio. Proteasome and methionine sulfoxide reductase activities were also reduced. These data may explain the increased apoptotic rate observed at more physiological oxygen levels. Altogether, this study highlights the importance of controlling oxygen levels in culture when investigating oxygen-dependent phenomena such as oxidative stress.  相似文献   

19.
Angiopoietin-1 (Ang1) is a ligand for the endothelial-specific tyrosine kinase receptor Tie2 and has been shown to play an essential role in embryonic vasculature development. There have been many studies about the anti-inflammatory effects of Ang1, most of which focus on endothelium cells. In the present study, we explore the role of Ang1-Tie2 signaling in the activation of macrophages upon lipopolysaccharide (LPS) stimulation. We found that Tie2 receptor is expressed on macrophages and Ang1 could inhibit LPS-induced activation of macrophages, as evidenced by cell migration and TNF-α production, specifically through Tie2 receptor. We further investigated the mechanism and found that Ang1-Tie2 could block LPS-induced activation of NF-κB which has been shown to be necessary for macrophage activation with LPS treatment. Thus, we described, for the first time, the role of Ang1-Tie2 signaling in macrophage activation and the possible mechanisms in response to immune stimulation.  相似文献   

20.
Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V) to As (III). Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号